scholarly journals AUTOMATIC RECONSTRUCTION OF ROOF MODELS FROM BUILDING OUTLINES AND AERIAL IMAGE DATA

2019 ◽  
Vol 59 (5) ◽  
pp. 448-457
Author(s):  
Vojtěch Hron ◽  
Lena Halounová

The knowledge of roof shapes is essential for the creation of 3D building models. Many experts and researchers use 3D building models for specialized tasks, such as creating noise maps, estimating the solar potential of roof structures, and planning new wireless infrastructures. Our aim is to introduce a technique for automating the creation of topologically correct roof building models using outlines and aerial image data. In this study, we used building footprints and vertical aerial survey photographs. Aerial survey photographs enabled us to produce an orthophoto and a digital surface model of the analysed area. The developed technique made it possible to detect roof edges from the orthophoto and to categorize the edges using spatial relationships and height information derived from the digital surface model. This method allows buildings with complicated shapes to be decomposed into simple parts that can be processed separately. In our study, a roof type and model were determined for each building part and tested with multiple datasets with different levels of quality. Excellent results were achieved for simple and medium complex roofs. Results for very complex roofs were unsatisfactory. For such structures, we propose using multitemporal images because these can lead to significant improvements and a better roof edge detection. The method used in this study was shared with the Czech national mapping agency and could be used for the creation of new 3D modelling products in the near future.

Author(s):  
M. A. Altyntsev ◽  
S. A. Arbuzov ◽  
R. A. Popov ◽  
G. V. Tsoi ◽  
M. O. Gromov

A dense digital surface model is one of the products generated by using UAV aerial survey data. Today more and more specialized software are supplied with modules for generating such kind of models. The procedure for dense digital model generation can be completely or partly automated. Due to the lack of reliable criterion of accuracy estimation it is rather complicated to judge the generation validity of such models. One of such criterion can be mobile laser scanning data as a source for the detailed accuracy estimation of the dense digital surface model generation. These data may be also used to estimate the accuracy of digital orthophoto plans created by using UAV aerial survey data. The results of accuracy estimation for both kinds of products are presented in the paper.


2017 ◽  
Vol 25 (2) ◽  
pp. 7-14
Author(s):  
Ondrej Trhan

Abstract The results of Remote Piloted Aircraft System (RPAS) photogrammetry are digital surface models and orthophotos. The main problem of the digital surface models obtained is that buildings are not perpendicular and the shape of roofs is deformed. The task of this paper is to obtain a more accurate digital surface model using building reconstructions. The paper discusses the problem of obtaining and approximating building footprints, reconstructing the final spatial vector digital building model, and modifying the buildings on the digital surface model.


Author(s):  
L. Zhu ◽  
Y. Li ◽  
H. Shimamura

Abstract. The objective of this study is the automatic extraction of the road network in a scene of the urban area from high resolution aerial image data. Our approach includes two stages aiming to solve two important issues respectively, i.e., an effective road extraction pipeline, and a precise vectorized road map. In the first stage, we proposed a so-called all element road model which describes a multiple-level structure of the basic road elements, i.e. intersection, central line, side lines, and road plane based on their spatial relations. An advanced road network extraction scheme was proposed to address the issues of tedious steps on segmentation, recognition and grouping, using the digital surface model (DSM) only. The key feature of the proposed approach was the cross validation of the road basic elements, which was applied all the way through the entire procedure of road extraction. In the second stage, the regularized road map was produced where center line and side lines subject to parallel and even layout rules. It gives more accurate and reliable map by utilizing both the height information of the DSM and the color information of the ortho image. Road surface was extracted from the image by region growing. Then, a regularized center line was modeled by linear regression using all the pixels of the road surface. The road width was estimated and two road side lines were modeled as the straight lines parallel with the center line. Finally, the road model was built up in terms of vectorized points and lines. The experimental results showed that the proposed approach performed satisfactorily in our test site.


2014 ◽  
Vol 3 (1) ◽  
pp. 119-126 ◽  
Author(s):  
Abdelkader El Garouani ◽  
Abdalla Alobeid ◽  
Said El Garouani

Author(s):  
A. Afghantoloee ◽  
S. Doodman ◽  
F. Karimipour ◽  
M. A. Mostafavi

Sensor deployment optimization to achieve the maximum spatial coverage is one of the main issues in Wireless geoSensor Networks (WSN). The model of the environment is an imperative parameter that influences the accuracy of geosensor coverage. In most of recent studies, the environment has been modeled by Digital Surface Model (DSM). However, the advances in technology to collect 3D vector data at different levels, especially in urban models can enhance the quality of geosensor deployment in order to achieve more accurate coverage estimations. This paper proposes an approach to calculate the geosensor coverage in 3D vector environments. The approach is applied on some case studies and compared with DSM based methods.


Author(s):  
M. A. Altyntsev ◽  
S. A. Arbuzov ◽  
R. A. Popov ◽  
G. V. Tsoi ◽  
M. O. Gromov

A dense digital surface model is one of the products generated by using UAV aerial survey data. Today more and more specialized software are supplied with modules for generating such kind of models. The procedure for dense digital model generation can be completely or partly automated. Due to the lack of reliable criterion of accuracy estimation it is rather complicated to judge the generation validity of such models. One of such criterion can be mobile laser scanning data as a source for the detailed accuracy estimation of the dense digital surface model generation. These data may be also used to estimate the accuracy of digital orthophoto plans created by using UAV aerial survey data. The results of accuracy estimation for both kinds of products are presented in the paper.


2020 ◽  
Vol 12 (4) ◽  
pp. 281-285
Author(s):  
A. V. Martynov ◽  
N. E. Kutko

The article deals with the problem of waste disposal and, accordingly, landfills in the Moscow Region, which have now become the number 1 problem for the environment in Moscow and the Moscow Region. To solve this problem, incineration plants (IP) will be established in the near future. 4 plants will be located in the Moscow Region that will be able to eliminate 2800 thousand tons of waste per year. Burning of waste results in formation of slag making 25% of its volume, which has a very high temperature (1300.1500°C). An arrangement is considered, in which slag is sent to a water bath and heats the water to 50.90°C. This temperature is sufficient to evaporate any low-temperature substance (freons, limiting hydrocarbons, etc.), whereupon the steam of the low-temperature working medium is sent to a turbine, which produces additional electricity. The creation of a low-temperature thermal power plant (TPP) increases the reliability of electricity generation at the IP. The operation of low-temperature TPPs due to the heat of slag is very efficient, their efficiency factor being as high as 40.60%. In addition to the efficiency of TPPs, capital costs for the creation of additional devices at the IP are of great importance. Thermal power plants operating on slag are just such additional devices, so it is necessary to minimize the capital costs of their creation. In addition to equipment for the operation of TPPs, it is necessary to have a working medium in an amount determined by calculations. From the wide variety of working media, which are considered in the article, it is necessary to choose the substance with the lowest cost.


Sign in / Sign up

Export Citation Format

Share Document