scholarly journals GLASS WASTE POWDER UTILIZATION IN HIGH PERFORMANCE CONCRETE

2019 ◽  
Vol 21 ◽  
pp. 24-27 ◽  
Author(s):  
Diana Mariaková ◽  
Tomáš Vlach ◽  
Tereza Pavlů

This paper deals with investigation of high-performance concrete (HPC) with full replacement of the silica powder by the waste glass powder. The silica powder was replaced by two types of the waste glass powder, originated from different sources (waste glass powder from grinding jewelry and milling of municipal waste glass). The properties of the waste glass powder were examined and compared with the silica powder. The mechanical and durability properties of three HPC mixtures were experimentally verified. The bulk density, flexural strength, and compressive strength were tested on beams 40 × 40 × 160mm at age 28 and 60 days and after 0, 25, 50, 75 and 100 freeze-thaw cycles. There were observed slightly worse properties of mixtures with the waste glass powder in comparison with reference HPC.

2018 ◽  
Vol 272 ◽  
pp. 290-295
Author(s):  
Tereza Pavlů ◽  
Tomáš Vlach ◽  
Jakub Řepka

This contribution is to verify the utilization of waste glass as partial replacement of fine aggregate for high performance concrete (HPC). Test results of fresh and hardened HPC will be presented. This study has been conducted through basic experimental research in order to analyze the possibilities of recycling waste glasses (grinding glass, milled glass powder from municipal waste) as partial replacement of silica powder for HPC.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4476
Author(s):  
Diana Mariaková ◽  
Klára Anna Mocová ◽  
Kristina Fořtová ◽  
Tereza Pavlů ◽  
Petr Hájek

This paper deals with the possibility of using different types of waste glass powder in high-performance concrete (HPC) mixtures as a fine fraction replacement. Subsequently, both fractions are used in this research in concrete as a substitute for fine sand and silica flour. To use waste glass in a basic building material such as concrete, it is necessary to verify the basic chemical properties of the selected waste materials. Apart from the basic chemical properties, its environmental impact also appears to be an essential property of waste materials in general. Therefore, the research is mainly focused on the leaching and ecotoxicity experiments on high-performance concrete. HPC mixtures are designed based on the results of the analyzed chemical properties and previous research performed by our research team. Ecotoxicity of these concretes is then verified using Czech standards to evaluate. The results showed a positive impact on the ecotoxic properties of waste glass when used in concrete. A new ecotoxicity classification of waste materials and concrete mixes containing waste materials is proposed as a result of this research and summarized in the conclusion of this paper.


2019 ◽  
Vol 69 (335) ◽  
pp. 194 ◽  
Author(s):  
S. Stoleriu ◽  
I. N. Vlasceanu ◽  
C. Dima ◽  
A. I. Badanoiu ◽  
G. Voicu

Porous alkali activated materials (AAM), can be obtained from waste glass powder and slag mixtures by alkali activation with NaOH solution. To obtain an adequate porous microstructure, the hardened AAM pastes were thermally treated at temperatures ranging between 900°C and 1000°C, for 60 or 30 minutes. Due to the intumescent behaviour specific for this type of materials, an important increase of the volume and porosity occurs during the thermal treatment. The partial substitution of waste glass powder with slag, determines the increase of compressive strength assessed before (up to 37 MPa) and after (around 10 MPa) thermal treatment; the increase of slag dosage also determines the increase of the activation temperature of the intumescent process (above 950°C). The high porosity and the specific microstructure (closed pores with various shapes and sizes) of these materials recommend them to be utilised as thermal and acoustical insulation materials.


2019 ◽  
Vol 50 (1) ◽  
pp. 30-34 ◽  
Author(s):  
Elżbieta Horszczaruk ◽  
Piotr Brzozowski

The utilization of solid waste materials or industrial waste as partial substitution of cement is growing in construction industry all around world. Less cement consumption causes consequently reduction in CO2 emission into the atmosphere and reduction in energy consumption. This paper examines the possibility of using finely ground waste glass as a partial replacement for cement and as a sealing admixture. Glass powder used in the research was prepared from the glass waste obtained from a local recycling company. Glass cullet made of brown glass, which after rinsing to remove sugars and other impurities, was dried and ground to a fraction below 125 μm.This paper is the revised version of the paper that has been published in the Proceedings of the Creative Construction Conference 2018 (Horszczaruk and Brzozowski, 2018).


2021 ◽  
Vol 2 (02) ◽  
pp. 72-77
Author(s):  
Sevar Neamat ◽  
Masoud Hassan

The flat glass powder usage instead of sand is convenient in structurally serviceable and environmentally compatible concrete. The deposits of glass powder in fibres cement compounds manufacture may add significant technical, economic and environmental necessities. The cement material and cement replacement by glass powder is chosen as parameters of the concrete. When the waste glass is fined to very fine dust, it demonstrates a cementitious characteristic due to silica content. Statistical methods and techniques are heavily used in glass powder replacement. In this paper, fifteen papers are reviewed and investigated to check the availability of using the statistical and modelling system in discussing the glass powder replacement with some other ingredients results between 2012-2021. We found that most of the papers depended on the ANOVA test to perform their work. Moreover, central composite face-centred (CFC) and Response Surface Methodology (RSM) took a part in the studies. From the numerous replicas, a quadratic prototypical was supplied with waste glass powder in the numbers of the studies that the glass waste powder is the best with its characteristics.


2021 ◽  
Vol 6 (1) ◽  
pp. 10
Author(s):  
Rosa María Tremiño ◽  
Teresa Real-Herraiz ◽  
Viviana Letelier ◽  
José Marcos Ortega

At present, the cement industry still constitutes an important pollutant in the industrial sector. As such, strategies to reduce its environmental impact are a popular research topic. One of these strategies consists of partially replacing clinker with other materials, such as waste glass powder. Here, the effects of the addition of glass powder on the microstructure and durability properties of mortars that incorporate 10% and 20% of this addition as a clinker replacement after 1500 hardening days were analyzed. Reference mortars prepared with ordinary Portland cement without additions were also studied. The mortars were kept in optimum conditions (20 °C and 100% relative humidity) until the testing age. Their microstructure was characterized using mercury intrusion porosimetry and impedance spectroscopy. The steady-state chloride diffusion coefficient and the absorption after immersion were determined as durability parameters. According to the results obtained in the present study, the mortars with the added glass powder showed similar porosities and more refined microstructure compared to the reference mortars. Furthermore, the durability properties of the mortars that incorporate glass powder were similar or even better than those noted for the reference mortars without any additions after 1500 hardening days, especially regarding the resistance against chloride ingress, with the added value of contributing to sustainability.


Sign in / Sign up

Export Citation Format

Share Document