scholarly journals FRACTURE BEHAVIOR OF FeAlSi INTERMETALLICS

2020 ◽  
Vol 27 ◽  
pp. 6-12
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Kateřina Nová ◽  
Filip Průša ◽  
...  

The study is devoted to the intermetallic alloy FeAl20Si20 (wt.%) with the potential applications in high temperature aggressive environments. The samples of the same chemical composition were prepared by spark plasma sintering from the different mechanically alloyed powders (pure elements and pre-alloyed powders). Differences in mechanical properties were characterized. Whereas no significant differences were found in hardness and Young´s modulus, fracture resistance was higher for the samples from pre-alloyed powders in which Palmqvist and lateral cracks were observed (contrary to the sample made of pure elements where only Palmqvist cracks were identified).

2018 ◽  
Vol 784 ◽  
pp. 15-20 ◽  
Author(s):  
Petr Haušild ◽  
Jaroslav Čech ◽  
Miroslav Karlík ◽  
Filip Průša ◽  
Pavel Novák ◽  
...  

The effect of processing conditions on microstructure and mechanical properties of Fe-Al-Si powders was studied by means of scanning electron microscopy, X-ray diffraction and nanoindentation. Fe-Al-Si alloy powder was prepared from pure elemental powders by mechanical alloying. Microstructure and mechanical properties of powders were characterized after various durations of mechanical alloying. Special sample preparation technique was developed allowing to characterize the properties of individual powder particles after each step of processing in a planetary ball mill. This step-by-step characterization allowed to find the optimum conditions for subsequent spark plasma sintering.


2006 ◽  
Vol 21 (6) ◽  
pp. 1460-1466 ◽  
Author(s):  
Diletta Sciti ◽  
Laura Silvestroni ◽  
Alida Bellosi

HfB2–15 vol% MoSi2 composites were produced from powder mixtures and densified through different techniques, namely hot pressing and spark plasma sintering. Dense materials were obtained at 1900 °C by hot pressing and at 1750 °C by spark plasma sintering. Microstructure and mechanical properties were compared. The most relevant result was for high-temperature strength: independent of the processing technique, the flexural strength in air at 1500 °C was higher than 500 MPa.


2010 ◽  
Vol 105-106 ◽  
pp. 218-221 ◽  
Author(s):  
Xuan Liu ◽  
Qiang Xu ◽  
Shi Zhen Zhu

ZrB2-SiC-B4C is sintered at 1700°C by spark plasma sintering process. The effect of B4C content on the mechanical properties and microstructure of ZrB2-SiC based ceramics is studied. The results show that, with the content of B4C increases, the relative density and room-temperature strength decrease in the ZrB2-SiC-B4C composite. The fracture toughness rises at first and then falls down. The high temperature strength increases.


2011 ◽  
Vol 675-677 ◽  
pp. 1143-1146
Author(s):  
Hilda Kundai Chikwanda ◽  
Yoko Yamabe-Mitarai ◽  
Silethelwe Chikosha

A Ti-50at%Pt alloy synthesized using the spark plasma sintering (SPS) technique has been characterized for phases’ identification. TiPt alloys have potential use as high temperature shape memory alloys(HTSMAs). Test specimens were prepared at SPS temperature of 1300°C. Sintering pressure and time were varied. The microstructural features of the specimens were investigated using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electron microscope used was equipped with an EDS detector, that, together with the XRD, were used for both the identification and analyses of the phases in the starting materials and the sintered alloys. High temperature XRD (800 -1300°C) as well as ambient temperature XRD analyses were done on the starting mechanically alloyed powders. All the samples tested at elevated temperatures were subsequently tested at room temperature after cooling. XRD analyses of the sintered samples were all done at room temperature. Analyses of the XRD results revealed new distinct phases from a temperature of 1000°C. A comparison of the room temperature XRD results for alloy powders and that of the sintered alloys was made. The following phases have been identified and studied TiPt B2, TiPt B19, Pt3Ti, Ti3Pt and Pt5Ti3. SPS pressure and sintering time did not show much effect on the phases detected. The alloy composition was found to be very inhomogeneous.


Sign in / Sign up

Export Citation Format

Share Document