scholarly journals BEHAVIOUR OF ALUMINIUM STRUCTURES IN FIRE, A review

Author(s):  
Davor Skejić ◽  
Ivan Ćurković ◽  
Marija Jelčić Rukavina

The interest in the application of aluminium as a structural material has been greatly increased in recent years. However, behaviour of aluminium structures when exposed to fire is still relatively unresearched. Due to low melting temperature of the alloy, aluminium structures have low fire resistance, but aluminium is reflective and has surface emissivity which is more than two times lower compared to carbon steel. The Eurocode facing this issue (EN 1999-1-2) is based mainly on the Eurocode for structural fire design of steel structures (EN 1993-1-2) and therefore is not fully suitable for the application on aluminium structures. Here, an overview of the structural behaviour of aluminium structures exposed to fire is given through the comparison with steel structures. As a conclusion, priorities for a future research are highlighted, which should provide a base for the next generation of modern codes for structural fire design of aluminium structures.

1999 ◽  
Vol 26 (2) ◽  
pp. 156-167 ◽  
Author(s):  
D I Nwosu ◽  
VKR Kodur

A state-of-the-art review of the behaviour of steel frame structures in fire is presented. Results from different studies indicate that the behaviour of a complete structure is different from that of a single structural member under fire conditions from the point of view of fire resistance. Earlier studies also show that analysis and design of steel structures against fire based on their overall behaviour could lead to a reduction or the elimination of applied fire protection to certain structural members. The effects of continuity, restraint conditions, and load ratio on the fire resistance of frame structures are discussed. The beneficial aspects derived from considering overall structural rather than single-member behaviour in fire are illustrated through the analysis on two one-bay, one-storey, unprotected steel portal frames, a column, and a beam. Also comparison is made between the performance of a beam with different end restraints in fire. Results from the analyses indicate that the fire resistance of a member is increased when it is considered as part of a structure compared with when it is considered as a single member.Key words: steel, frames, fire resistance, buckling, loads, overall structural behaviour.


2018 ◽  
Vol 1147 ◽  
pp. 24-29
Author(s):  
Jerneja Kolšek ◽  
Andrej Rebec

This paper presents the possible deviations between “realistic” (performance-based) calculations of fire resistance of steel structures and corresponding calculations made by one of the often used simplified (prescriptive) procedures of EN 1993-1-2 i.e. the method of critical temperature (MCT). The comparison is done for a case of an assembly consisting of a steel beam and a steel girder connected to each other by a bolted fin-plate connection. For such structure the MCT method suggests that the structural fire resistance is 50 minutes. However, the realistic fire resistance calculated by an advanced performance-based procedure is evaluated to 44 minutes. Although the discrepancy between the results of both methods is not significant in the presented case, this finding implies that MCT can be on the unsafe side for some cases. More future debates and clarifications are therefore encouraged regarding the actual limits of the applicability of the simplified procedures.


Author(s):  
Nicoletta Galluzzi ◽  
Mark A. O'Connor

<p>Performance-based fire design represents one of the routes available to design for structural fire safety. The development of the approach and the assessment of the behaviour of multi-storey composite steel structures in fire have been mainly developed from the understanding gained from the Cardington full-scale fire tests carried out between 1995-96. The tests not only contributed to the understanding of the inherent fire resistance of steel-framed buildings, but also provided significant data to validate computational finite element (FE) models which are now used to develop optimum fire protection designs for safety, sustainability and economy.</p><p>By adopting the performance-based approach to structural fire engineering, more economical designs and efficient construction programmes of buildings can be achieved. Additionally, performance-based design can enhance the levels of safety by providing a better understanding of the actual behaviour of the structure during fire.</p><p>This paper outlines the lessons learned from the Cardington fire tests and the development of the key outcomes in the last 20 years in the advancement of the performance-based fire design process. Examples of practical applications of performance-based fire design on large and tall steel-framed buildings carried out by the authors are given along with the main challenges and technical issues.</p>


2011 ◽  
Vol 255-260 ◽  
pp. 519-523 ◽  
Author(s):  
Xin Meng Yu ◽  
Xiao Xiong Zha ◽  
Zhao Hui Huang

A great many of experiments has shown that reinforced concrete (RC) structures suffered from spalling in fire. However, at present there are still no convincing spalling predicting models available due to the inhomogeneous nature and complicated thermo-hydro-mechanical interactions in concrete at elevated temperatures. In order to evaluate the fire resistance of RC structures which are subjected to concrete spalling, a thermal analysis procedure is developed which considers the effects of spalling on the growth of temperature in RC members. The predicted temperatures are then used to model the structural behaviour. The spalled portion of concrete is modelled as "void", which has no thermal and mechanical properties. A series of parametric studies carried out on RC structural members with different boundary conditions shows that the influence of spalling on fire resistance is very significant apart from the RC slabs subject to higher laterally restraint.


2013 ◽  
Vol 12 (1) ◽  
pp. 179-186
Author(s):  
Piotr Turkowski

This work describes the structural fire design process of RC structures with externally bonded reinforcement. First part is based on the calculation method given in EN 1992-1-2 and addresses the question whether the fire protection of externally bonded reinforcement is necessary in every situation? The second part shows what such fire protection should look like and how it should be designed. Moreover, a test procedure for determining the effectiveness of applied fire protection systems to concrete structural members reinforced with FRP, used in Fire Testing Laboratory of Building Research Institute (ITB) is presented.


Sign in / Sign up

Export Citation Format

Share Document