scholarly journals Land Surface Temperature Mapping using Geoinformation Techniques

2018 ◽  
Vol 17 (1) ◽  
pp. 17-32 ◽  
Author(s):  
Chukwuka Friday Agbor ◽  
Esther Oluwafunmilayo Makinde

General environmental management, which involves monitoring and modeling, requires the information of the Land surface temperature (LST) status of area concerned. Land surface temperature has gained relevance recognition over the years and there is need to develop approaches that can determine LST using satellite images. This study was conducted in Akure which has experienced rapid urbanization in recent time. The study utilized Landsat data of 1984, 1990, 2000, 2003, 2014 and 2016. The temperature data were derived from Landsat images using remote sensing algorithms for assessing LST from thermal infrared (TIR) data (bands 6 and 10). These data were processed and analyzed using tools in Idrisi and ArcGIS software systems. Satellite-derived land surface temperatures were validated with in-situ temperature data. The results revealed parabolic increase in temperature over the years and the changing pattern was investigated by adopting existing ecological indexes.. The validation operation revealed average bias value of between remote sensing- and ground-based data. This implies that remote sensing technique is reliable and therefore could be employed for large scale temperature mapping. The results could be used in mitigating urban heat island effectssuch as heat-related stress and ill-timed human deaths.

Author(s):  
A. Rajani, Dr. S.Varadarajan

Land Surface Temperature (LST) quantification is needed in various applications like temporal analysis, identification of global warming, land use or land cover, water management, soil moisture estimation and natural disasters. The objective of this study is estimation as well as validation of temperature data at 14 Automatic Weather Stations (AWS) in Chittoor District of Andhra Pradesh with LST extracted by using remote sensing as well as Geographic Information System (GIS). Satellite data considered for estimation purpose is LANDSAT 8. Sensor data used for assessment of LST are OLI (Operational Land Imager) and TIR (Thermal Infrared). Thermal band  contains spectral bands of 10 and 11 were considered for evaluating LST independently by using algorithm called Mono Window Algorithm (MWA). Land Surface Emissivity (LSE) is the vital parameter for calculating LST. The LSE estimation requires NDVI (Normalized Difference Vegetation Index) which is computed by using Band 4 (visible Red band) and band 5 (Near-Infra Red band) spectral radiance bands. Thermal band images having wavelength 11.2 µm and 12.5 µm of 30th May, 2015 and 21st October, 2015 were processed for the analysis of LST. Later on validation of estimated LST through in-suite temperature data obtained from 14 AWS stations in Chittoor district was carried out. The end results showed that, the LST retrieved by using proposed method achieved 5 per cent greater correlation coefficient (r) compared to LST retrieved by using existing method which is based on band 10.


2021 ◽  
Vol 314 ◽  
pp. 04001
Author(s):  
Manal El Garouani ◽  
Mhamed Amyay ◽  
Abderrahim Lahrach ◽  
Hassane Jarar Oulidi

Land use/land cover (LULC) change has been confirmed that have a significant impact on climate through various pathways that modulate land surface temperature (LST) and precipitation. However, there are no studies illustrated this link in the Saïss plain using remote sensing data. Thus, the aim of this study is to monitor the LST relationship between LULC and vegetation index change in the Saïss plain using GIS and Remote Sensing Data. We used 18 Landsat images to study the annual and interannual variation of LST with LULC (1988, 1999, 2009 and 2019). To highlight the effect of biomass on LST distribution, the Normalized Difference Vegetation Index (NDVI) was calculated, which is a very good indicator of biomass. The mapping results showed an increase in the arboriculture and urbanized areas to detriment of arable lands and rangelands. Based on statistical analyzes, the LST varies during the phases of plant growth in all seasons and that it is diversified due to the positional influence of LULC type. The variation of land surface temperature with NDVI shows a negative correlation. This explains the increase in the surface temperature in rangelands and arable land while it decreases in irrigated crops and arboriculture.


2021 ◽  
Vol 13 (2) ◽  
pp. 323
Author(s):  
Liang Chen ◽  
Xuelei Wang ◽  
Xiaobin Cai ◽  
Chao Yang ◽  
Xiaorong Lu

Rapid urbanization greatly alters land surface vegetation cover and heat distribution, leading to the development of the urban heat island (UHI) effect and seriously affecting the healthy development of cities and the comfort of living. As an indicator of urban health and livability, monitoring the distribution of land surface temperature (LST) and discovering its main impacting factors are receiving increasing attention in the effort to develop cities more sustainably. In this study, we analyzed the spatial distribution patterns of LST of the city of Wuhan, China, from 2013 to 2019. We detected hot and cold poles in four seasons through clustering and outlier analysis (based on Anselin local Moran’s I) of LST. Furthermore, we introduced the geographical detector model to quantify the impact of six physical and socio-economic factors, including the digital elevation model (DEM), index-based built-up index (IBI), modified normalized difference water index (MNDWI), normalized difference vegetation index (NDVI), population, and Gross Domestic Product (GDP) on the LST distribution of Wuhan. Finally, to identify the influence of land cover on temperature, the LST of croplands, woodlands, grasslands, and built-up areas was analyzed. The results showed that low temperatures are mainly distributed over water and woodland areas, followed by grasslands; high temperatures are mainly concentrated over built-up areas. The maximum temperature difference between land covers occurs in spring and summer, while this difference can be ignored in winter. MNDWI, IBI, and NDVI are the key driving factors of the thermal values change in Wuhan, especially of their interaction. We found that the temperature of water area and urban green space (woodlands and grasslands) tends to be 5.4 °C and 2.6 °C lower than that of built-up areas. Our research results can contribute to the urban planning and urban greening of Wuhan and promote the healthy and sustainable development of the city.


Sign in / Sign up

Export Citation Format

Share Document