scholarly journals Greenhouse gas emissions from cattle production sector in South Korea

2016 ◽  
Vol 21 (2) ◽  
pp. 112
Author(s):  
Andi Febrisiantosa ◽  
J.H. Lee ◽  
H.L. Choi

<p class="abstrak2">South Korea has declared to reduce greenhouse gas emissions by 30% compared to the current level by the year 2020. The greenhouse gas emissions from the cattle production sector in South Korea were evaluated in this study. The greenhouse gas emissions of dairy cattle, Non-Korean native cattle, and Korean native (Hanwoo) cattle production activities in 16 local administrative provinces of South Korea over a ten-year period (2005–2014) were estimated using the methodology specified by the Guidelines for National Greenhouse Gas Inventory of the IPCC (2006). The emissions studied herein included methane from enteric fermentation, methane from manure management, nitrous oxide from manure management and carbon dioxide from direct on-farm energy use. Over the last ten years, Hanwoo cattle production activities were the primary contributor of CH<sub>4</sub> from enteric fermentation, CH<sub>4</sub> from manure management, NO<sub>2</sub> from manure management and CO<sub>2</sub> from on-farm energy use in the cattle livestock sector of South Korea, which comprised to 83.52% of total emissions from cattle production sector.</p>

2014 ◽  
Vol 94 (1) ◽  
pp. 155-173 ◽  
Author(s):  
Susantha Jayasundara ◽  
Claudia Wagner-Riddle

Jayasundara, S. and Wagner-Riddle, C. 2014. Greenhouse gas emissions intensity of Ontario milk production in 2011 compared with 1991. Can. J. Anim. Sci. 94: 155–173. For identifying opportunities for reducing greenhouse gas (GHG) emissions from milk production in Ontario, this study analyzed GHG intensity of milk [kg CO2 equivalents kg−1 fat and protein corrected milk (FPCM)] in 2011 compared with 1991 considering cow and crop productivity improvements and management changes over this period. It also assessed within-province variability in GHG intensity of milk in 2011 using county-level data related to milk production. After allocating whole-farm GHG emissions between milk and meat using an allocation factor calculated according to the International Dairy Federation equation, GHG intensity of Ontario milk was 1.03 kgCO2eq kg−1 FPCM in 2011, 22% lower than that in 1991 (1.32 kg CO2eq kg−1 FPCM). Greenhouse gas sources directly associated with dairy cattle decreased less (21 and 14% for enteric fermentation and manure management, respectively) than sources associated with feed crop production (30 to 34% for emissions related to N inputs and farm-field work). Proportions of GHG contributed from different life cycle activities did not change, with enteric fermentation contributing 46%, feed crop production 34%, manure management 18% and milking and related activities 2%. Within province, GHG intensity varied from 0.89 to 1.36 kg CO2eq kg−1 FPCM, a variation inversely correlated with milk productivity per cow (kg FPCM sold cow−1 year−1). The existence of a wide variation is strong indication for potential further reductions in GHG intensity of Ontario milk through the identification of practices associated with high efficiency.


2018 ◽  
Author(s):  
Adrian Camilleri ◽  
Richard P. Larrick ◽  
Shajuti Hossain ◽  
Dalia Echeverri

2021 ◽  
Vol 1 ◽  
Author(s):  
Jennie Moore

The British Columbia Institute of Technology (BCIT) is Canada's premier polytechnic. In 2008, BCIT partnered with its local electricity utility to hire a full-time energy manager. The following year, BCIT's School of Construction and the Environment initiated a campus-as-living-lab of sustainability project called Factor Four in the seven buildings it occupies on BCIT's main campus in Burnaby. The purpose was to explore whether a four-fold (75%) reduction in materials and energy use could be achieved without compromising service levels. By 2016, the project achieved a 50% reduction in energy use and associated greenhouse gas emissions. Factor Four attracted over four million dollars in funding, engaged over 250 students from 12 educational programs, and produced over $200,000 savings annually. In 2017, BCIT set an ambitious target to reduce its annual greenhouse gas emissions 33% below 2007 levels by 2023, and 80% by 2050, across all five of its campuses. BCIT’s ultimate goal is to become both greenhouse gas neutral and a net energy producer. By setting ambitious targets and systematically implementing energy efficiency improvements, utilizing waste-heat exchange, fuel switching, and developing on-site renewable energy, BCIT is on track to achieving its energy management and climate change goals.


2021 ◽  
Author(s):  
Antonia Schuster ◽  
Ilona M. Otto

&lt;p&gt;The Earth&amp;#8217;s population of seven billion consume varying amounts of planetary resources with varying impacts on the environment. &amp;#160;We combine the analytical tools offered by the socio-ecological metabolism and class theory and propose a novel social stratification theory to identify the differences and hot spots in individual resource and energy use. The theory is applied to German society and we use per capita greenhouse gas emissions as a proxy for resource and energy use. We use socio-metabolic profiles of individuals from an economic, social and cultural perspective to investigate resource intensive lifestyles. The results show large disparities and inequalities in emission patterns in German society. For example, the greenhouse gas emissions in the lowest and highest emission classes can differ by a magnitude of ten. Income, education, age, gender and regional differences (FRG vs. GDR) result in distinct emission profiles. Class differentiation is also noted as economic, cultural and social factors influence individual carbon footprints. We also analyze the role of digital technologies, regarding resource and energy consumption, as a proxy for cultural capital. Highlighting inequalities within societies is a step towards downscaling carbon emission reduction targets that are key to avoid transgressing climate change planetary boundary. We discuss the results in the context of climate policy implications as well as behavioral changes that are needed to meet climate policy objectives.&lt;/p&gt;


Author(s):  
Dejan R. Ostojic ◽  
Ranjan K. Bose ◽  
Holly Krambeck ◽  
Jeanette Lim ◽  
Yabei Zhang

Sign in / Sign up

Export Citation Format

Share Document