scholarly journals Paecilomyces lilacinus and Verticillium chlamydosporium Fungi as Biological Control of Fasciolosis

Author(s):  
Riza Zainuddin Ahmad
1995 ◽  
Vol 73 (S1) ◽  
pp. 65-70 ◽  
Author(s):  
B. R. Kerry

The nematophagous fungus, Verticillium chlamydosporium, has considerable potential as a biological control agent for root-knot nematodes on a range of crops. The fungus is a general facultative parasite that attacks the eggs of several nematode species. The biology of the fungus is reviewed and the need for a detailed understanding of its ecology for its rational use as a biological control agent is highlighted. Isolates of the fungus must colonize the rhizosphere to be effective control agents. Plants differ in their ability to support the fungus and greatest control is achieved on those cultivars that support abundant growth of the fungus but produce only limited galling in response to nematode attack. On such plants, most eggs produced by nematodes are exposed to parasitism by this nematophagous fungus in the rhizosphere. Key words: biological control, nematophagous fungi, root-knot nematodes, Verticillium chlamydosporium.


2002 ◽  
Vol 48 (10) ◽  
pp. 879-885 ◽  
Author(s):  
R J Holland ◽  
T S Gunasekera ◽  
K L Williams ◽  
K M.H Nevalainen

Strains of the filamentous soil fungus Paecilomyces lilacinus are currently being developed for use as biological control agents against root-knot, cyst, and other plant-parasitic nematodes. The inoculum applied in the field consists mainly of spores. This study was undertaken to examine the size, ultrastructure, and rodlet layers of P. lilacinus spores and the effect of the culture method on structural and functional spore properties. A rodlet layer was identified on aerial spores only. Other differences noted between aerial spores and those produced in submerged culture included the size and appearance of spores and thickness of spore coat layers when examined with transmission electron microscopy. The two spore types differed in UV tolerance, with aerial spores being less sensitive to environmentally relevant UV radiation. Also, viability after drying and storage was better with the aerial spores. Both spore types exhibited similar nematophagous ability.Key words: Paecilomyces lilacinus, fungal spores, rodlet layer, spore ultrastructure, UV sensitivity, biological control.


Sign in / Sign up

Export Citation Format

Share Document