nematophagous fungus
Recently Published Documents


TOTAL DOCUMENTS

207
(FIVE YEARS 36)

H-INDEX

27
(FIVE YEARS 3)

2021 ◽  
Vol 2 ◽  
Author(s):  
Damien Courtine ◽  
Xing Zhang ◽  
Jonathan J. Ewbank

Domestication provides a window into adaptive change. Over the course of 2 decades of laboratory culture, a strain of the nematode-specific fungus Drechmeria coniospora became more virulent during its infection of Caenorhabditis elegans. Through a close comparative examination of the genome sequences of the original strain and its more pathogenic derivative, we identified a small number of non-synonymous mutations in protein-coding genes. In one case, the mutation was predicted to affect a gene involved in hypoxia resistance and we provide direct corroborative evidence for such an effect. The mutated genes with functional annotation were all predicted to impact the general physiology of the fungus and this was reflected in an increased in vitro growth, even in the absence of C. elegans. While most cases involved single nucleotide substitutions predicted to lead to a loss of function, we also observed a predicted restoration of gene function through deletion of an extraneous tandem repeat. This latter change affected the regulatory subunit of a cAMP-dependent protein kinase. Remarkably, we also found a mutation in a gene for a second protein of the same, protein kinase A, pathway. Together, we predict that they result in a stronger repression of the pathway for given levels of ATP and adenylate cyclase activity. Finally, we also identified mutations in a few lineage-specific genes of unknown function that are candidates for factors that influence virulence in a more direct manner.


2021 ◽  
pp. 108172
Author(s):  
E. Céspedes-Gutiérrez ◽  
D.M. Aragón -Novoa ◽  
M.I. Gómez-Alvarez ◽  
J.A. Cubides-Cárdenas ◽  
D.F. Cortés-Rojas

2021 ◽  
Author(s):  
Damien Courtine ◽  
Xing Zhang ◽  
Jonathan J. Ewbank

AbstractDomestication provides a window into adaptive change. Over the course of 2 decades of laboratory culture, a strain of the nematode-specific fungus Drechmeria coniospora became more virulent during its infection of Caenorhabditis elegans. Through a close comparative examination of the genome sequences of the original strain and its more pathogenic derivative, we identified a small number of non-synonymous mutations in protein-coding genes. In one case, the mutation was predicted to affect a gene involved in hypoxia resistance and we provide direct corroborative evidence for such an effect. The mutated genes with functional annotation were all predicted to impact the general physiology of the fungus and this was reflected in an increased in vitro growth, even in the absence of C. elegans. While most cases involved single nucleotide substitutions predicted to lead to a loss of function, we also observed a predicted restoration of gene function through deletion of an extraneous tandem repeat. This latter change affected the regulatory subunit of a cAMP-dependent protein kinase. Remarkably, we also found a mutation in a gene for a second protein of the same, protein kinase A, pathway. Together, we predict that they result in a stronger repression of the pathway for given levels of ATP and adenylate cyclase activity. Finally, we also identified mutations in a few lineage-specific genes of unknown function that are candidates for factors that influence virulence in a more direct manner.


2021 ◽  
Vol 9 (8) ◽  
pp. 1735
Author(s):  
Juan Wan ◽  
Zebao Dai ◽  
Keqin Zhang ◽  
Guohong Li ◽  
Peiji Zhao

Plant parasitic nematodes cause severe damage to crops. Endoparasitic nematophagous fungi (ENF) are a type of important biocontrol fungi, which can cause disease or kill nematodes by producing various spores. As a major ENF, Drechmeria coniospora displays certain potential for controlling plant-parasitic nematodes. In this study, the pathogenicity and secondary metabolites of the endoparasitic fungus D. coniospora YMF1.01759 were investigated. The strain D. coniospora YMF1.01759 had high infection efficiency against nematodes. The process of infecting nematodes by the strain was observed under an electron microscope. Here, 13 metabolites including one new compound 4(S)-butoxy-3-(butoxymethyl)-2-hydroxycyclopent-2-en-1-one (2) were isolated and identified from the fermentation products of D. coniospora YMF1.01759 cultured in a SDAY solid medium. Furthermore, a bioassay showed that 5-hydroxymethylfuran-2-carboxylic acid (1) is toxic to the root knot nematode Meloidogyne incognita and affects the hatching of its egg. Thereby, the nematicidal mortality attained 81.50% at 100 μg/mL for 48 h. Furthermore, egg hatching was inhibited at the tested concentrations, compared with water control eggs. This is the first report on the secondary metabolites of the ENF D. coniospora. The results indicated that D. coniospora could infect nematodes by spores and produce active metabolites to kill nematodes. The biological control potential of D. coniospora against nematodes was expounded further.


Author(s):  
Tinatin Doolotkeldieva ◽  
Saikal Bobushova ◽  
Ayperi Muratbekova ◽  
Christina Schuster ◽  
Andreas Leclerque

2021 ◽  
pp. 109458
Author(s):  
Guilherme Costa Fausto ◽  
Mariana Costa Fausto ◽  
Ítalo Stoupa Vieira ◽  
Samuel Galvão de Freitas ◽  
Lorendane Millena de Carvalho ◽  
...  

Author(s):  
Elizabeth Céspedes‐Gutiérrez ◽  
Diana M. Aragón‐Novoa ◽  
Martha I. Gómez‐Álvarez ◽  
Diego F. Cortés‐Rojas

2021 ◽  
Vol 22 (6) ◽  
pp. 3147
Author(s):  
Marta Suarez-Fernandez ◽  
Ana Aragon-Perez ◽  
Luis Vicente Lopez-Llorca ◽  
Federico Lopez-Moya

Fungal LysM effector proteins can dampen plant host–defence responses, protecting hyphae from plant chitinases, but little is known on these effectors from nonpathogenic fungal endophytes. We found four putative LysM effectors in the genome of the endophytic nematophagous fungus Pochonia chlamydosporia (Pc123). All four genes encoding putative LysM effectors are expressed constitutively by the fungus. Additionally, the gene encoding Lys1—the smallest one—is the most expressed in banana roots colonised by the fungus. Pc123 Lys1, 2 and 4 display high homology with those of other strains of the fungus and phylogenetically close entomopathogenic fungi. However, Pc123 Lys3 displays low homology with other fungi, but some similarities are found in saprophytes. This suggests evolutionary divergence in Pc123 LysM effectors. Additionally, molecular docking shows that the NAcGl binding sites of Pc123 Lys 2, 3 and 4 are adjacent to an alpha helix. Putative LysM effectors from fungal endophytes, such as Pc123, differ from those of plant pathogenic fungi. LysM motifs from endophytic fungi show clear conservation of cysteines in Positions 13, 51 and 63, unlike those of plant pathogens. LysM effectors could therefore be associated with the lifestyle of a fungus and give us a clue of how organisms could behave in different environments.


2021 ◽  
pp. PHYTO-06-20-022
Author(s):  
You Li ◽  
Haiying Yu ◽  
João P. M. Araújo ◽  
Xinfeng Zhang ◽  
Yingchao Ji ◽  
...  

The nematophagous fungal genus Esteya is reported as a natural enemy of the pine wood nematode Bursaphelenchus xylophilus, which causes pine wilt in Asia and Europe. During a survey of fungi associated with ambrosia beetles in Florida, an undescribed Esteya species was found. A phylogenetic analysis based on nuclear large subunit and β-tubulin DNA sequences supported this isolate as a new species, E. floridanum. Morphological and phylogenetic characteristics and a species description are provided here. The fungus was observed to kill the pine wood nematode in vitro. To evaluate the ability of E. floridanum to protect trees against the pine wood nematode in vivo, the effect of prophylactic inoculation was tested on Pinus koraiensis and Larix olgensis in Liaoning, China. The results suggest that the fungus is not a plant pathogen and that it delays wilt and postpones death of two conifer trees. This presents a potential new avenue for research on biocontrol of pine wilt disease and stresses the value of research on pest organisms in their native regions.


Sign in / Sign up

Export Citation Format

Share Document