scholarly journals Structural Safety Analysis of a Long Span Cable-stayed Bridge with a Partially Earth Anchored Cable System on Dynamic Loads during Construction

2016 ◽  
Vol 31 (4) ◽  
pp. 104-110 ◽  
Author(s):  
Jeong-Hun Won ◽  
Gyeoung Yun Kim
2010 ◽  
Vol 148-149 ◽  
pp. 1390-1393
Author(s):  
De Shan Shan ◽  
Peng Yan ◽  
Zhen Hua Wang

Intelligent health monitoring system of the long-span railway cable-stayed bridge requires the comprehensive knowledge of instrumentation, analytical and information processing technologies with the knowledge and experiences in design, construction, operation and maintenance of railway cable-stayed bridge for long-term monitoring the performance throughout its lifecycle. It is necessary to perform sensor-based structural monitoring for identifying the bridge conditions in order to assure the structural safety and to evaluate the operational performance. The considerations for deploying a proper monitoring system are appropriate sensor instrumentation, robust signal acquisition, reliable signal processing, and intelligent signal and information processing. The experience on developing an autonomous monitoring system in the one certain railway cable-stayed bridge newly constructed is introduced in this paper. Sensor and hardware instrumentation, signal transmission, signal acquisition and analysis are schematically described mainly. Experience through this work will be worthwhile lessons for other similar efforts.


Author(s):  
Alexander M. Belostotsky ◽  
Alexander I. Nagibovich

The article presents structural safety analysis of the three-dimensional long-span systems “ground base – reinforced concrete foundation structures and stands - metal structures of the coating and facades” of football stadiums for the 2018 World Cup in Russia with basic and special combinations of loads and formulation problems of future in-vestigations.


2020 ◽  
Vol 157 ◽  
pp. 106988 ◽  
Author(s):  
Lin Liang ◽  
XiaoZhen Li ◽  
Jing Zheng ◽  
KangNing Lei ◽  
Hongye Gou

2011 ◽  
Vol 480-481 ◽  
pp. 1496-1501
Author(s):  
Liu Hui

In order to study the dynamic characteristics of a super-long-span cable-stayed bridge which is semi-floating system, the spatial finite element model of this cable-stayed bridge was established in ANSYS based on the finite element theory.Modal solution was conducted using subspace iteration method, and natural frequencies and vibration modes were obtained.The dynamic characteristics of this super-long-span cable-stayed bridge were then analyzed.Results showed that the super-long-span cable-stayed bridge of semi-floating system has long basic cycle, low natural frequencies, dense modes and intercoupling vibration modes.


2018 ◽  
Vol 19 (01) ◽  
pp. 1940010 ◽  
Author(s):  
Yan-Chun Ni ◽  
Qi-Wei Zhang ◽  
Jian-Feng Liu

Modal identification aims at identifying the dynamic properties including natural frequency, damping ratio, and mode shape, which is an important step in further structural damage detection, finite element model updating, and condition assessment. This paper presents the work on the investigation of the dynamic characteristics of a long-span cable-stayed bridge-Sutong Bridge by a Bayesian modal identification method. Sutong Bridge is the second longest cable-stayed bridge in the world, situated on the Yangtze River in Jiangsu Province, China, with a total length of 2 088[Formula: see text]m. A short-term nondestructive on-site vibration test was conducted to collect the structural response and determine the actual dynamic characteristics of the bridge before it was opened to traffic. Due to the limited number of sensors, multiple setups were designed to complete the whole measurement. Based on the data collected in the field tests, modal parameters were identified by a fast Bayesian FFT method. The first three modes in both vertical and transverse directions were identified and studied. In order to obtain modal parameter variation with temperature and vibration levels, long-term tests have also been performed in different seasons. The variation of natural frequency and damping ratios with temperature and vibration level were investigated. The future distribution of the modal parameters was also predicted using these data.


Sign in / Sign up

Export Citation Format

Share Document