scholarly journals Observation of Mechanical Strength of Materials for Dog Dental Prosthesis Production

2019 ◽  
Vol 41 (2) ◽  
pp. 93-100
Author(s):  
Park Yujin ◽  
Choi Sungmin
2012 ◽  
Vol 66 (1) ◽  
pp. 144-146 ◽  
Author(s):  
Fuminori Saito ◽  
Itsuo Nishiyama ◽  
Toshio Hyodo

1975 ◽  
Vol 7 (12) ◽  
pp. 1534-1536
Author(s):  
Yu. G. Veksler ◽  
Yu. A. Karasyuk ◽  
V. G. Sorokin

2021 ◽  
Vol 2 (11) ◽  
pp. 1168-1169
Author(s):  
Tadeusz Hryniewicz

This work is to reveal and present some contemporary surface treatment methods used in view of improving performance of parts of a variety of metals and alloys. Stainless steels and titanium alloys are with the group of particular focus, important for medical implants in chirurgy and instruments used in dentistry. Improved, anti-corrosion properties and mechanical strength of materials are the primary features for examination.


Author(s):  
Avilash Carpenter ◽  
M.K. Gupta ◽  
Neetesh Kumar Jain ◽  
Urvashi Sharma ◽  
Rahul Sisodiya

Aim: The main of the study is to formulate and develop orally disintegrating fast dissolving tablet of Metoclopramide hydrochloride. Material & Methods: Before formulation and development of selected drug, the standard curve in buffer was prepared and absorbance at selected maxima was taken. Then two different disintegrating agents were selected and drug was mixed with disintegrating agents in different ratio. Various Preformulation parameters and evaluation of tablet i.e. disintegration time, dissolution time, friability, hardness, thickness were measured by standard procedure. Result & Discussion: The angle of repose for all the batches prepared. The values were found to be in the range of 30.46 to 36.45, which indicates good flow property for the powder blend according to the USP. The bulk density and tapped density for all the batches varied from 0.49 to 0.54 g/mL and 0.66 to 0.73, respectively. Carr’s index values were found to be in the range of 23.33 to 25.88, which is satisfactory for the powders as well as implies that the blends have good compressibility. Hausner ratio values obtained were in the range of 1.22 to 1.36, which shows a passable flow property for the powder blend based on the USP. The results for tablet thickness and height for all batches was found to range from 4.45 to 4.72 mm and 3.67 to 3.69 mm, respectively. Hardness or breaking force of tablets for all batches was found to range from 32.8 to 36.2 N. Tablet formulations must show good mechanical strength with sufficient hardness in order to handle shipping and transportation. Friability values for all the formulations were found to be in the range of 0.22 % to 0.30 %. Conclusion: Orally disintegrating tablets were compressed in order to have sufficient mechanical strength and integrity to withstand handling, shipping and transportation. The formulation was shown to have a rapid disintegration time that complied with the USP (less than one minute). The data obtained from the stability studies indicated that the orally disintegrating mini-tablets of MTH were stable under different environmental storage conditions. Keywords: Formulation & Development, Fast Dissolving Tablet, Metoclopramide, Anti-Emetic Drug, Oral Disintegrating Tablet


2003 ◽  
Vol 766 ◽  
Author(s):  
Raymond N. Vrtis ◽  
Mark L. O'Neill ◽  
Jean L. Vincent ◽  
Aaron S. Lukas ◽  
Brian K. Peterson ◽  
...  

AbstractWe report on our work to develop a process for depositing nanoporous organosilicate (OSG) films via plasma enhanced chemical vapor deposition (PECVD). This approach entails codepositing an OSG material with a plasma polymerizable hydrocarbon, followed by thermal annealing of the material to remove the porogen, leaving an OSG matrix with nano-sized voids. The dielectric constant of the final film is controlled by varying the ratio of porogen precursor to OSG precursor in the delivery gas. Because of the need to maintain the mechanical strength of the final material, diethoxymethylsilane (DEMS) is utilized as the OSG precursor. Utilizing this route we are able to deposit films with a dielectric constant of 2.55 to 2.20 and hardness of 0.7 to 0.3 GPa, respectively.


Sign in / Sign up

Export Citation Format

Share Document