A New Virtual Isolation Technique for Power Supplies

Author(s):  
Spiros Cofinas
Author(s):  
N. F. Ziegler

A high-voltage terminal has been constructed for housing the various power supplies and metering circuits required by the field-emission gun (described elsewhere in these Proceedings) for the high-coherence microscope. The terminal is cylindrical in shape having a diameter of 14 inches and a length of 24 inches. It is completely enclosed by an aluminum housing filled with Freon-12 gas at essentially atmospheric pressure. The potential of the terminal relative to ground is, of course, equal to the accelerating potential of the microscope, which in the present case, is 150 kilovolts maximum.


1988 ◽  
Vol 49 (C4) ◽  
pp. C4-549-C4-553 ◽  
Author(s):  
E. FIGUERAS ◽  
S. HAZEBROUCK ◽  
F. VAN DE WIELE
Keyword(s):  

2012 ◽  
Vol 132 (7) ◽  
pp. 684-690 ◽  
Author(s):  
Toshikazu Okubo ◽  
Hiroyuki Shoji ◽  
Hideho Yamamura ◽  
Shinobu Irikura ◽  
Naoki Maru

2018 ◽  
Author(s):  
Zhi Jie Lau ◽  
Chris Philips

Abstract Thermal-Laser Signal Injection Microscopy (T-LSIM) is a widely used fault isolation technique. Although there are several T-LSIM systems on the market, each is limited in terms of the voltage and current it can produce. In this paper, the authors explain how they incorporated an Amplified External Isolated Source-Sense (AxISS) unit into their T-LSIM platform, increasing its current sourcing capability and voltage biasing range. They also provide examples highlighting the types of faults and failures that the modified system can detect.


Author(s):  
Lucile C. Teague Sheridan ◽  
Linda Conohan ◽  
Chong Khiam Oh

Abstract Atomic force microscopy (AFM) methods have provided a wealth of knowledge into the topographic, electrical, mechanical, magnetic, and electrochemical properties of surfaces and materials at the micro- and nanoscale over the last several decades. More specifically, the application of conductive AFM (CAFM) techniques for failure analysis can provide a simultaneous view of the conductivity and topographic properties of the patterned features. As CMOS technology progresses to smaller and smaller devices, the benefits of CAFM techniques have become apparent [1-3]. Herein, we review several cases in which CAFM has been utilized as a fault-isolation technique to detect middle of line (MOL) and front end of line (FEOL) buried defects in 20nm technologies and beyond.


2018 ◽  
Author(s):  
Chun Haur Khoo

Abstract Driven by the cost reduction and miniaturization, Wafer Level Chip Scale Packaging (WLCSP) has experienced significant growth mainly driven by mobile consumer products. Depending on the customers or manufacturing needs, the bare silicon backside of the WLCSP may be covered with a backside laminate layer. In the failure analysis lab, in order to perform the die level backside fault isolation technique using Photon Emission Microscope (PEM) or Laser Signal Injection Microscope (LSIM), the backside laminate layer needs to be removed. Most of the time, this is done using the mechanical polishing method. This paper outlines the backside laminate removal method of WLCSP using a near infrared (NIR) laser that produces laser energy in the 1,064 nm range. This method significantly reduces the sample preparation time and also reduces the risk of mechanical damage as there is no application of mechanical force. This is an effective method for WLCSP mounted on a PCB board.


Author(s):  
Chi-Lin Huang ◽  
Yu Hsiang Shu

Abstract Conventional isolation techniques, such as Optical Beam Induced Resistance Change (OBIRCH) or photoemission microscopy (PEM) frequently fail to locate failure points when only applied to power pin of the semiconductor device. In this paper, a novel OBIRCH failure isolation technique is utilized to detect leakage failures. Different test conditions are presented to identify the differences in current when all input pins are pulled high in an OBIRCH system. In order to verify a failure point, it is necessary to perform electrical analysis of the suspected failure point in the failing sample. In general, Conductive Atomic Force Microscope (C-AFM) and a Nano-Prober is sufficient to provide the electrical data required for failure analysis. Experiment results, however, prove that this novel OBIRCH failure isolation technique is effective in locating the failure point, especially for leakage failures. The failure mechanism is illustrated using cross-sectional TEM.


Sign in / Sign up

Export Citation Format

Share Document