Postprocessing Synchronization of a Laser Scanning System Aboard a UAV

2019 ◽  
Vol 85 (10) ◽  
pp. 753-763
Author(s):  
Marcela do Valle Machado ◽  
Antonio Maria Garcia Tommaselli ◽  
Fernanda Magri Torres ◽  
Mariana Batista Campos

Synchronization of airborne laser scanning devices is a critical process that directly affects data accuracy. This process can be more challenging with low-cost airborne laser scanning (ALS) systems because some device connections from off-the-shelf sensors are less stable. An alternative to synchronization is performing a postprocessing clock correction. This article presents a technique for postprocessing synchronization (off-line) that estimates clock differences based on the correlation between the signals from the global navigation satellite system (GNSS) trajectory and the light detection and ranging (lidar) range, followed by refinement with a least-squares method. The correlation between signals was automatically estimated considering the planned flight maneuvers, in a flat terrain, to produce altimetric trajectory variations. Experiments were performed with an Ibeo LUX laser unit integrated with a NovAtel SPAN-IGM-S1 inertial navigation system that was transported by an unmanned aerial vehicle (UAV). The planimetric and altimetric accuracies of the point cloud obtained with the proposed postprocessing synchronization technique were 28 cm and 10 cm, respectively, at a flight height of 35 m.

Author(s):  
A. Mayr ◽  
M. Bremer ◽  
M. Rutzinger ◽  
C. Geitner

<p><strong>Abstract.</strong> With this contribution we assess the potential of unmanned aerial vehicle (UAV) based laser scanning for monitoring shallow erosion in Alpine grassland. A 3D point cloud has been acquired by unmanned aerial vehicle laser scanning (ULS) at a test site in the subalpine/alpine elevation zone of the Dolomites (South Tyrol, Italy). To assess its accuracy, this point cloud is compared with (i) differential global navigation satellite system (GNSS) reference measurements and (ii) a terrestrial laser scanning (TLS) point cloud. The ULS point cloud and an airborne laser scanning (ALS) point cloud are rasterized into digital surface models (DSMs) and, as a proof-of-concept for erosion quantification, we calculate the elevation difference between the ULS DSM from 2018 and the ALS DSM from 2010. For contiguous spatial objects of elevation change, the volumetric difference is calculated and a land cover class (<i>bare earth</i>, <i>grassland</i>, <i>trees</i>), derived from the ULS reflectance and RGB colour, is assigned to each change object. In this test, the accuracy and density of the ALS point cloud is mainly limiting the detection of geomorphological changes. Nevertheless, the plausibility of the results is confirmed by geomorphological interpretation and documentation in the field. A total eroded volume of 672&amp;thinsp;m<sup>3</sup> is estimated for the test site (48&amp;thinsp;ha). Such volumetric estimates of erosion over multiple years are a key information for improving sustainable soil management. Based on this proof-of-concept and the accuracy analysis, we conclude that repeated ULS campaigns are a well-suited tool for erosion monitoring in Alpine grassland.</p>


Author(s):  
A. Fryskowska ◽  
M. Kedzierski ◽  
P. Walczykowski ◽  
D. Wierzbicki ◽  
P. Delis ◽  
...  

The archaeological heritage is non-renewable, and any invasive research or other actions leading to the intervention of mechanical or chemical into the ground lead to the destruction of the archaeological site in whole or in part. For this reason, modern archeology is looking for alternative methods of non-destructive and non-invasive methods of new objects identification. The concept of aerial archeology is relation between the presence of the archaeological site in the particular localization, and the phenomena that in the same place can be observed on the terrain surface form airborne platform. One of the most appreciated, moreover, extremely precise, methods of such measurements is airborne laser scanning. In research airborne laser scanning point cloud with a density of 5 points/sq. m was used. Additionally unmanned aerial vehicle imagery data was acquired. Test area is located in central Europe. The preliminary verification of potentially microstructures localization was the creation of digital terrain and surface models. These models gave an information about the differences in elevation, as well as regular shapes and sizes that can be related to the former settlement/sub-surface feature.<br><br> The paper presents the results of the detection of potentially sub-surface microstructure fields in the forestry area.


Author(s):  
T. Zieher ◽  
M. Bremer ◽  
M. Rutzinger ◽  
J. Pfeiffer ◽  
P. Fritzmann ◽  
...  

<p><strong>Abstract.</strong> Multi-temporal 3D point clouds acquired with a laser scanner can be efficiently used for an area-wide assessment of landslide-induced surface changes. In the present study, displacements of the Vögelsberg landslide (Tyrol, Austria) are assessed based on available data acquired with airborne laser scanning (ALS) in 2013 and data acquired with an unmanned aerial vehicle (UAV) equipped with a laser scanner (ULS) in 2018. Following the data pre-processing steps including registration and ground filtering, buildings are segmented and extracted from the datasets. The roofs, represented as multi-temporal 3D point clouds are then used to derive displacement vectors with a novel matching tool based on the iterative closest point (ICP) algorithm. The resulting mean annual displacements are compared to the results of a geodetic monitoring based on an automatic tracking total station (ATTS) measuring 53 retroreflective prisms across the study area every hour since May 2016. In general, the results are in agreement concerning the mean annual magnitude (ATTS: 6.4&amp;thinsp;cm within 2.2 years, 2.9&amp;thinsp;cm a<sup>&amp;minus;1</sup>; laser scanning data: 13.2&amp;thinsp;cm within 5.4 years, 2.4&amp;thinsp;cm a<sup>&amp;minus;1</sup>) and direction of the derived displacements. The analysis of the laser scanning data proved suitable for deriving long-term landslide displacements and can provide additional information about the deformation of single roofs.</p>


Author(s):  
Bilal Muhammad ◽  
Ramjee Prasad ◽  
Marco Nisi2 ◽  
Fabio Menichetti2 ◽  
Ernestina Cianca ◽  
...  

Global Navigation Satellite System (GNSS) Real Time Kinematic (RTK) employs high-end dual-frequency receivers and antennas to deliver precise positioning that, in some way, restricts the use of GNSSRTKto a subset of user market due to very high cost. The emerging mass-market user applications, however, require centimeter-positioning accuracy considering a cost-effective solution. This calls for low-cost GNSS RTK solutions to create new possibilities for mass-market user applications to make use of GNSS high accuracy positioning in a variety of ways. One of the applications, which makes use of low-cost GNSS RTK receiver, is the maintenance of photovoltaic (PV) plants using Unmanned Aerial Vehicle (UAV). This paper proposes a solution that aims at automating the maintenance of PV plant with enhanced reliability in a time and cost effective manner, which otherwise requires intermediate human intervention. The paper presents the architectural concept, system design, and end-to-end algorithm that plays a pivotal role in enabling the automatic report generation of PV plant status. Preliminary results of the proof-of-concept shows the feasibility of the proposed solution.  


2018 ◽  
Vol 24 (3) ◽  
pp. 318-334 ◽  
Author(s):  
Fernanda Magri Torres ◽  
Antonio Maria Garcia Tommaselli

Abstract Lightweight Unmanned Aerial Vehicles (UAVs) have become a cost effective alternative for studies which use aerial Remote Sensing with high temporal frequency requirements for small areas. Laser scanner devices are widely used for rapid tridimensional data acquisition, mainly as a complementary data source to photogrammetric surveying. Recent studies using laser scanner systems onboard UAVs for forestry inventory and mapping applications have presented encouraging results. This work describes the development and accuracy assessment of a low cost mapping platform composed by an Ibeo Lux scanner, a GNSS (Global Navigation Satellite System) antenna, an Inertial Navigation System Novatel Span-IGM-S1, integrating a GNSS receiver and an IMU (Inertial Measurement Unit), a Raspberry PI portable computer and an octopter UAV. The system was assessed in aerial mode using an UAV octopter developed by SensorMap Company. The resulting point density in a plot with trees concentration was also evaluated. The point density of this device is lower than conventional Airborne Laser Systems but the results showed that altimetric accuracy with this system is around 30 cm, which is acceptable for forest applications. The main advantages of this system are their low weight and low cost, which make it attractive for several applications.


Sign in / Sign up

Export Citation Format

Share Document