scholarly journals EFFECTIVE DETECTION OF SUB-SURFACE ARCHEOLOGICAL FEATURES FROM LASER SCANNING POINT CLOUDS AND IMAGERY DATA

Author(s):  
A. Fryskowska ◽  
M. Kedzierski ◽  
P. Walczykowski ◽  
D. Wierzbicki ◽  
P. Delis ◽  
...  

The archaeological heritage is non-renewable, and any invasive research or other actions leading to the intervention of mechanical or chemical into the ground lead to the destruction of the archaeological site in whole or in part. For this reason, modern archeology is looking for alternative methods of non-destructive and non-invasive methods of new objects identification. The concept of aerial archeology is relation between the presence of the archaeological site in the particular localization, and the phenomena that in the same place can be observed on the terrain surface form airborne platform. One of the most appreciated, moreover, extremely precise, methods of such measurements is airborne laser scanning. In research airborne laser scanning point cloud with a density of 5 points/sq. m was used. Additionally unmanned aerial vehicle imagery data was acquired. Test area is located in central Europe. The preliminary verification of potentially microstructures localization was the creation of digital terrain and surface models. These models gave an information about the differences in elevation, as well as regular shapes and sizes that can be related to the former settlement/sub-surface feature.<br><br> The paper presents the results of the detection of potentially sub-surface microstructure fields in the forestry area.

Author(s):  
T. Zieher ◽  
M. Bremer ◽  
M. Rutzinger ◽  
J. Pfeiffer ◽  
P. Fritzmann ◽  
...  

<p><strong>Abstract.</strong> Multi-temporal 3D point clouds acquired with a laser scanner can be efficiently used for an area-wide assessment of landslide-induced surface changes. In the present study, displacements of the Vögelsberg landslide (Tyrol, Austria) are assessed based on available data acquired with airborne laser scanning (ALS) in 2013 and data acquired with an unmanned aerial vehicle (UAV) equipped with a laser scanner (ULS) in 2018. Following the data pre-processing steps including registration and ground filtering, buildings are segmented and extracted from the datasets. The roofs, represented as multi-temporal 3D point clouds are then used to derive displacement vectors with a novel matching tool based on the iterative closest point (ICP) algorithm. The resulting mean annual displacements are compared to the results of a geodetic monitoring based on an automatic tracking total station (ATTS) measuring 53 retroreflective prisms across the study area every hour since May 2016. In general, the results are in agreement concerning the mean annual magnitude (ATTS: 6.4&amp;thinsp;cm within 2.2 years, 2.9&amp;thinsp;cm a<sup>&amp;minus;1</sup>; laser scanning data: 13.2&amp;thinsp;cm within 5.4 years, 2.4&amp;thinsp;cm a<sup>&amp;minus;1</sup>) and direction of the derived displacements. The analysis of the laser scanning data proved suitable for deriving long-term landslide displacements and can provide additional information about the deformation of single roofs.</p>


2021 ◽  
Vol 13 (15) ◽  
pp. 2938
Author(s):  
Feng Li ◽  
Haihong Zhu ◽  
Zhenwei Luo ◽  
Hang Shen ◽  
Lin Li

Separating point clouds into ground and nonground points is an essential step in the processing of airborne laser scanning (ALS) data for various applications. Interpolation-based filtering algorithms have been commonly used for filtering ALS point cloud data. However, most conventional interpolation-based algorithms have exhibited a drawback in terms of retaining abrupt terrain characteristics, resulting in poor algorithmic precision in these regions. To overcome this drawback, this paper proposes an improved adaptive surface interpolation filter with a multilevel hierarchy by using a cloth simulation and relief amplitude. This method uses three hierarchy levels of provisional digital elevation model (DEM) raster surfaces with thin plate spline (TPS) interpolation to separate ground points from unclassified points based on adaptive residual thresholds. A cloth simulation algorithm is adopted to generate sufficient effective initial ground seeds for constructing topographic surfaces with high quality. Residual thresholds are adaptively constructed by the relief amplitude of the examined area to capture complex landscape characteristics during the classification process. Fifteen samples from the International Society for Photogrammetry and Remote Sensing (ISPRS) commission are used to assess the performance of the proposed algorithm. The experimental results indicate that the proposed method can produce satisfying results in both flat areas and steep areas. In a comparison with other approaches, this method demonstrates its superior performance in terms of filtering results with the lowest omission error rate; in particular, the proposed approach retains discontinuous terrain features with steep slopes and terraces.


2021 ◽  
Vol 13 (2) ◽  
pp. 261
Author(s):  
Francisco Mauro ◽  
Andrew T. Hudak ◽  
Patrick A. Fekety ◽  
Bryce Frank ◽  
Hailemariam Temesgen ◽  
...  

Airborne laser scanning (ALS) acquisitions provide piecemeal coverage across the western US, as collections are organized by local managers of individual project areas. In this study, we analyze different factors that can contribute to developing a regional strategy to use information from completed ALS data acquisitions and develop maps of multiple forest attributes in new ALS project areas in a rapid manner. This study is located in Oregon, USA, and analyzes six forest structural attributes for differences between: (1) synthetic (i.e., not-calibrated), and calibrated predictions, (2) parametric linear and semiparametric models, and (3) models developed with predictors computed for point clouds enclosed in the areas where field measurements were taken, i.e., “point-cloud predictors”, and models developed using predictors extracted from pre-rasterized layers, i.e., “rasterized predictors”. Forest structural attributes under consideration are aboveground biomass, downed woody biomass, canopy bulk density, canopy height, canopy base height, and canopy fuel load. Results from our study indicate that semiparametric models perform better than parametric models if no calibration is performed. However, the effect of the calibration is substantial in reducing the bias of parametric models but minimal for the semiparametric models and, once calibrations are performed, differences between parametric and semiparametric models become negligible for all responses. In addition, minimal differences between models using point-cloud predictors and models using rasterized predictors were found. We conclude that the approach that applies semiparametric models and rasterized predictors, which represents the easiest workflow and leads to the most rapid results, is justified with little loss in accuracy or precision even if no calibration is performed.


Author(s):  
Yuzhou Zhou ◽  
Ronggang Huang ◽  
Tengping Jiang ◽  
Zhen Dong ◽  
Bisheng Yang

2018 ◽  
Vol 7 (9) ◽  
pp. 342 ◽  
Author(s):  
Adam Salach ◽  
Krzysztof Bakuła ◽  
Magdalena Pilarska ◽  
Wojciech Ostrowski ◽  
Konrad Górski ◽  
...  

In this paper, the results of an experiment about the vertical accuracy of generated digital terrain models were assessed. The created models were based on two techniques: LiDAR and photogrammetry. The data were acquired using an ultralight laser scanner, which was dedicated to Unmanned Aerial Vehicle (UAV) platforms that provide very dense point clouds (180 points per square meter), and an RGB digital camera that collects data at very high resolution (a ground sampling distance of 2 cm). The vertical error of the digital terrain models (DTMs) was evaluated based on the surveying data measured in the field and compared to airborne laser scanning collected with a manned plane. The data were acquired in summer during a corridor flight mission over levees and their surroundings, where various types of land cover were observed. The experiment results showed unequivocally, that the terrain models obtained using LiDAR technology were more accurate. An attempt to assess the accuracy and possibilities of penetration of the point cloud from the image-based approach, whilst referring to various types of land cover, was conducted based on Real Time Kinematic Global Navigation Satellite System (GNSS-RTK) measurements and was compared to archival airborne laser scanning data. The vertical accuracy of DTM was evaluated for uncovered and vegetation areas separately, providing information about the influence of the vegetation height on the results of the bare ground extraction and DTM generation. In uncovered and low vegetation areas (0–20 cm), the vertical accuracies of digital terrain models generated from different data sources were quite similar: for the UAV Laser Scanning (ULS) data, the RMSE was 0.11 m, and for the image-based data collected using the UAV platform, it was 0.14 m, whereas for medium vegetation (higher than 60 cm), the RMSE from these two data sources were 0.11 m and 0.36 m, respectively. A decrease in the accuracy of 0.10 m, for every 20 cm of vegetation height, was observed for photogrammetric data; and such a dependency was not noticed in the case of models created from the ULS data.


Author(s):  
Leena Matikainen ◽  
Juha Hyyppä ◽  
Paula Litkey

During the last 20 years, airborne laser scanning (ALS), often combined with multispectral information from aerial images, has shown its high feasibility for automated mapping processes. Recently, the first multispectral airborne laser scanners have been launched, and multispectral information is for the first time directly available for 3D ALS point clouds. This article discusses the potential of this new single-sensor technology in map updating, especially in automated object detection and change detection. For our study, Optech Titan multispectral ALS data over a suburban area in Finland were acquired. Results from a random forests analysis suggest that the multispectral intensity information is useful for land cover classification, also when considering ground surface objects and classes, such as roads. An out-of-bag estimate for classification error was about 3% for separating classes asphalt, gravel, rocky areas and low vegetation from each other. For buildings and trees, it was under 1%. According to feature importance analyses, multispectral features based on several channels were more useful that those based on one channel. Automatic change detection utilizing the new multispectral ALS data, an old digital surface model (DSM) and old building vectors was also demonstrated. Overall, our first analyses suggest that the new data are very promising for further increasing the automation level in mapping. The multispectral ALS technology is independent of external illumination conditions, and intensity images produced from the data do not include shadows. These are significant advantages when the development of automated classification and change detection procedures is considered.


Author(s):  
W. Ostrowski ◽  
M. Pilarska ◽  
J. Charyton ◽  
K. Bakuła

Creating 3D building models in large scale is becoming more popular and finds many applications. Nowadays, a wide term “3D building models” can be applied to several types of products: well-known CityGML solid models (available on few Levels of Detail), which are mainly generated from Airborne Laser Scanning (ALS) data, as well as 3D mesh models that can be created from both nadir and oblique aerial images. City authorities and national mapping agencies are interested in obtaining the 3D building models. Apart from the completeness of the models, the accuracy aspect is also important. Final accuracy of a building model depends on various factors (accuracy of the source data, complexity of the roof shapes, etc.). In this paper the methodology of inspection of dataset containing 3D models is presented. The proposed approach check all building in dataset with comparison to ALS point clouds testing both: accuracy and level of details. Using analysis of statistical parameters for normal heights for reference point cloud and tested planes and segmentation of point cloud provides the tool that can indicate which building and which roof plane in do not fulfill requirement of model accuracy and detail correctness. Proposed method was tested on two datasets: solid and mesh model.


2020 ◽  
Vol 9 (4) ◽  
pp. 224
Author(s):  
Mihnea Cățeanu ◽  
Arcadie Ciubotaru

A digital model of the ground surface has many potential applications in forestry. Nowadays, Light Detection and Ranging (LiDAR) is one of the main sources for collecting morphological data. Point clouds obtained via laser scanning are used for modelling the ground surface by interpolation, a process which is affected by various errors. Using LiDAR data to collect ground surface data for forestry applications is a challenging scenario because the presence of forest vegetation will hinder the ability of laser pulses to reach the ground. The density of ground observations will be therefore reduced and not homogenous (as it is affected by the variations in canopy density). Furthermore, forest areas are generally present in mountainous areas, in which case the interpolation of the ground surface is more challenging. In this paper, we present a comparative analysis of interpolation accuracy for nine algorithms, which are used for generating Digital Terrain Models from Airborne Laser Scanning (ALS) data, in mountainous terrain covered by dense forest vegetation. For most of the algorithms we find a similar performance in terms of general accuracy, with RMSE values between 0.11 and 0.28 m (when model resolution is set to 0.5 m). Five of the algorithms (Natural Neighbour, Delauney Triangulation, Multilevel B-Spline, Thin-Plate Spline and Thin-Plate Spline by TIN) have vertical errors of less than 0.20 m for over 90 percent of validation points. Meanwhile, for most algorithms, major vertical errors (of over 1 m) are associated with less than 0.05 percent of validation points. Digital Terrain Model (DTM) resolution, ground slope and point cloud density influence the quality of the ground surface model, while for canopy density we find a less significant link with the quality of the interpolated DTMs.


Sign in / Sign up

Export Citation Format

Share Document