Behavior of Reinforced Concrete Beams with a Shear Span to Depth Ratio Between 1.0 and 2.5

1984 ◽  
Vol 81 (3) ◽  
2019 ◽  
Vol 22 (14) ◽  
pp. 2998-3010 ◽  
Author(s):  
Zhao-Hui Lu ◽  
Hai Li ◽  
Wengui Li ◽  
Yan-Gang Zhao ◽  
Zhuo Tang ◽  
...  

Reinforcement corrosion exhibits an adverse effect on the shear strength of reinforced concrete structures. In order to investigate the effects of chloride-induced corrosion of reinforcing steel on the shear behavior and failure pattern of reinforced concrete beams, a total of 24 reinforced concrete beams with different concrete strength grades and arrangements of stirrups were fabricated, among which 22 beams were subjected to accelerated corrosion to achieve different degrees of reinforcement corrosion. The failure pattern, crack propagation, load–displacement response, and ultimate strength of these beams were investigated under a standard four-point loading test in this study. Extensive comparative analysis was conducted to investigate the effects of the concrete strength, shear span-to-depth ratio, and stirrup type on the shear behavior of the corroded reinforced concrete beams. The results show that increasing the stirrup yielding strength is more effective in improving the shear strength of corroded reinforced concrete beams than that of concrete compressive strength. In terms of three types of stirrups, the shear strength of the beams with deformed HRB-335 is least sensitive to stirrup corrosion, followed by the beams with smooth HPB-235 and the beams with deformed HRB-400. The effect of the different stirrups on the shear strength depends on the corrosion degree of stirrup and shear span-to-depth ratio of the beam. The predicted results of shear strength of corroded reinforced concrete beams by a proposed analytical model are well consistent with the experimental results.


2017 ◽  
Vol 12 (2) ◽  
pp. 39-45 ◽  
Author(s):  
Pavlo Vegera ◽  
Rostyslav Vashkevych ◽  
Roman Khmil ◽  
Zinoviy Blikharskyy

Abstract In this article, results of experimental testing of reinforced concrete beams without transverse shear reinforcement are given. Three prototypes for improved testing methods were tested. The testing variable parameter was the shear span to the effective depth ratio. In the result of the tests we noticed that bearing capacity of RC beams is increased with the decreasing shear span to the effective depth ratio. The design method according to current codes was applied to test samples and it showed a significant discrepancy results. Than we proposed the improved design method using the adjusted value of shear strength of concrete CRd,c. The results obtained by the improved design method showed satisfactory reproducibility.


2015 ◽  
Vol 22 (4) ◽  
pp. 491-499 ◽  
Author(s):  
Ahmed K. EL-SAYED ◽  
Raja R. HUSSAIN ◽  
Ahmed B. SHURAIM

The effect of stirrups damage due to corrosion on the shear strength and behaviour of reinforced concrete beams was experimentally investigated. A total of fourteen full-scale reinforced concrete beams were constructed and tested under four-point bending up to failure. The test beams were 200 mm wide, 350 mm deep, and 2800 mm long. The reinforcing stirrups of nine of the beams were subjected to accelerated corrosion prior to structural testing. The test variables were the corrosion damage level, spacing of stirrups, and shear span to depth ratio. The beams were tested under shear span to depth ratio of 2 or 1 representing short or deep members. The test results indicated that the corroded beams exhibited degradation in stiffness and shear strength in comparison to the uncorroded control specimens. This degradation appeared to increase as the corrosion level increases and as stirrup spacing as well as shear span to depth ratio decreases.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 17
Author(s):  
Hyun-Do Yun ◽  
Gwon-Young Jeong ◽  
Won-Chang Choi

Steel fiber has been used successfully in concrete mixtures to control volumetric changes, including shrinkage. However, the feasibility of the use of steel fiber has been restricted to nonstructural construction, such as ‘slab on ground’. Recently, researchers have attempted to expand the applications of steel fiber to replace structural reinforcement (rebar) and have shown promising results in its substitution for shear reinforcement. Few studies have been conducted to ensure the feasibility of using steel fiber in structural components, however. This experimental study was designed to investigate the shear performance of steel fiber-reinforced concrete beams using the tensile strength of steel fiber and the shear span-to-depth ratio as variables. The experimental results indicate that the tensile strength of steel fiber significantly affects the shear strength of steel fiber-reinforced concrete beams, regardless of the shear span-to-depth ratio, and that steel fiber can play a role in shear reinforcement of concrete beams.


Sign in / Sign up

Export Citation Format

Share Document