Evaluation of Shear Deformation and Energy Dissipation of Reinforced Concrete Members Subjected to Cyclic Loading

2013 ◽  
Vol 110 (5) ◽  
2011 ◽  
Vol 243-249 ◽  
pp. 5427-5434
Author(s):  
Hui Qian ◽  
Hong Nan Li ◽  
Di Cui ◽  
Huai Chen

Shape memory alloys (SMAs) are unique class materials that have the ability to undergo large deformations, while returning to their undeformed shape through either the applications of heat (SME) or removal of stress (SE). The unique properties lead to their wide applications in the biomedical, mechanical, aerospace, commercial industries, and recently in civil engineering. The paper presents two case studies of structural seismic vibration control using SMAs. The first one is a study of the SMA reinforced RC members. Two innovative applications in RC members, such as SMA-based Precast Concrete Frame Connection (SMA-PCFC), and SMA reinforced RC short column, were proposed. Moreover, the self-rehabilitation properties of SMAs-based Intelligent Reinforced Concrete Beams (SMA-IRCBs) were further experimentally investigated. The results show that SMAs can improve the mechanical properties of concrete members. SMA reinforced RC members have unique seismic performance compared to ordinarily steel reinforced concrete members. The second one is a study of the structural energy dissipation system using SMAs damping device. An innovative hybrid SMAs friction device (HSMAFD) which consists of pre-tensioned superelastic SMA wires and friction devices (FD) was presented. The results of cyclic tensile tests show that the HSMAFD exhibits stable large energy dissipation capacity and re-centering feature. The effectiveness of the HSMAFD in reducing horizontal response of structures subjected to strong seismic excitations was verified through shaking table tests carried out on a reduced-scale symmetric steel frame model with and without the HSMAFD.


2019 ◽  
Vol 9 (13) ◽  
pp. 2708 ◽  
Author(s):  
Yixin Zhang ◽  
Shansuo Zheng ◽  
Xianliang Rong ◽  
Liguo Dong ◽  
Hao Zheng

Previous research shows that freeze–thaw cycles represent one of the most dangerous threats to reinforced concrete (RC) structures. However, there is almost no experimental data on the effects of freeze–thaw cycles on the seismic behavior of RC columns showing flexure-shear failure. In this study, three columns with the shear span-to-depth ratio of 2.5 were subjected to different numbers of freeze–thaw cycles (FTCs) and pseudo-static testing. The seismic performance indexes of the specimens were analyzed in terms of hysteretic behavior, skeleton curves, shear deformation, and energy dissipation. The test observations show that the failure patterns of the test columns altered from the flexure dominated to shear dominated, owing to the more severe deterioration in shear capacity induced by freeze–thaw attack than in flexure capacity. The test results also indicate that freeze–thaw cycles significantly decrease the ductility and energy dissipation of test columns, and they increase the contributions of shear deformation to the total deformation.


1972 ◽  
Vol 98 (7) ◽  
pp. 1341-1360 ◽  
Author(s):  
Robert Park ◽  
Dudley Charles Kent ◽  
Richard A. Sampson

2010 ◽  
Vol 163-167 ◽  
pp. 1714-1718
Author(s):  
Guang Ming Chang ◽  
Guo Hua Xing ◽  
Bo Quan Liu

. It is possible to quantify the damage to reinforced concrete members under cyclic loading through a nondimensional parameter known as a “damage index”. The damage index can be either a global damage index for the total structure, or a local damage index for the element level. In this paper, a new damage model termed “equivalent ductility damage model” has been suggested for evaluation of the damage index, which is consistent with accepted definitions of ductility. Substructure method was applied to verify the suggested new damage model. A total of 3 identical half-scale reinforced concrete columns were tested under variable amplitude cyclic loading up to the ultimate failure of the specimens. The imposed displacement histories were obtained from analytical simulations of the model column subjected to a series of earthquakes. Test observations indicate that the proposed model predicts 100 percent damage at the ultimate failure state of the element. The proposed damage index model can be extended to other structural elements, such as shear walls, beams, beam-column junctions, etc.


Author(s):  
Xiang Hu ◽  
Weichen Xue ◽  
Yanbo Sun ◽  
Chenguang Li

A new type of precast steel reinforced concrete (PSRC) frame, which were composed of composite steel reinforced concrete (CSRC) beam, PSRC column and cast-in-situ (CIS) joint, were proposed in this paper. The assemble technique used in the ordinary steel structures were adopted in PSRC frames to improve the construction efficiency. The seismic performance of PSRC frame structures was investigated based on the test results of connections and frame. Firstly, full-scale internal connection specimens, including a CIS connection specimen RCJ-1 and a PSRC connection specimen PCJ-1, were tested under low reversed cyclic loading. Results revealed that both the specimens RCJ-1 and PCJ-1 exhibited similar performance in terms of loading capacity, stiffness degradation and energy dissipation. The ductility of specimen PCJ-1 was about 3.81, which was a little lower than the specimen RCJ-1. Then, a 1/3-scale PSRC frame structure specimen, namely PCF-1, was tested under low reversed cyclic loading. Results showed that the PSRC frame specimen PCF-1 was failed in mixed failure mechanism, which provide good energy dissipation capacity. The ductility coefficient of PCF-1 was about 3.45 indicating that the PCF-1 behaved in ductility manner. The results of this investigation could enrich the data available documenting the behavior of PSRC frame, and contribute to enlarge the application of PSRC frame structures in seismic zone.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Yue Li ◽  
Qiqi Wu

To fully ascertain the ultimate shear failure state and the friction sliding performance of laminated rubber bearings in bridges, a series of cyclic loading tests were conducted. The energy dissipation characteristics of the laminated rubber bearings with two end plates, rubber bearings with unilateral friction sliding, and lead rubber bearing (LRB) under low-frequency cyclic loads were compared and analyzed. The results showed the following. (1) The ultimate shear deformation of the rubber bearings with two end plates could reach 300% to 400% of the rubber layer thickness. The energy dissipation capacity of the bearings was weak, and the hysteresis curves presented narrow zonal shapes. (2) The rubber bearings with unilateral friction sliding had similar energy dissipation capacities compared to the LRB. With the increase of the sliding distance, the dissipated energy continuously enlarged. The shear deformation of the bearing was no longer increased after reaching the maximum. After the test, the bearings remained in a good condition. The hysteresis curves of the load and displacement presented bilinear shapes. (3) Under the cyclic loading, the energy dissipation capacity of LRB was stable. The hysteresis curves of LRB were always fuller than the laminated rubber bearings.


Buildings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 203
Author(s):  
Giuseppe Santarsiero ◽  
Angelo Masi

This study is devoted to experimentally investigate the seismic behaviour of reinforced concrete (RC) wide beam–column joints equipped with a steel jacketing seismic strengthening solution. To this end, three identical full-scale specimens have been tested under cyclic loading, one in the as-built condition and two after the application of the strengthening solutions. Details of selected solutions are described in the paper along with the experimental results which confirm how the application of simple and feasible steel interventions can effectively improve the seismic capacity of wide beam–column connections in RC frames, especially in terms of lateral load carrying capacity and energy dissipation.


Sign in / Sign up

Export Citation Format

Share Document