Bond Behavior of Epoxy-Coated Reinforcing Bars with Seawater Sea-Sand Concrete

2020 ◽  
Vol 117 (4) ◽  
2021 ◽  
Author(s):  
Aamer Abbas ◽  
◽  
Yaqoob Yaqoob ◽  
Ola Hussein ◽  
Ibrahim Al-Ani ◽  
...  

This study presents experimentally the bond behavior of light-weight concrete specimens with grouted reinforcing bars in comparison with conventional concrete specimens. A total of (9) pull-out specimens were studied; (3) specimens of conventional concrete, (3) specimens of light-weight concrete, and other (3) specimens of grouted light-weight concrete. Two variables are adopted in this investigation: specimen width and type of concrete (conventional concrete, light-weight concrete and grouted light-weight concrete). The study contains a discussion of the general behavior of the specimens in addition to the study of the ultimate bond capacity, maximum bond stresses and the relationship between the stress and the slip for different pull-out specimens. Results show that bond strength is highest for the largest specimen size (bond strength of grouted light-weight concrete specimen with specimen width 400 mm is higher than that of the specimen with (200 mm) width by about (13.13%)). Also, bond strength is highest for the grouted light-weight concrete specimen (bond strength of grouted light-weight concrete specimen is higher than conventional concrete specimen by (11.11%)).


2010 ◽  
Vol 7 (5) ◽  
pp. 403-419 ◽  
Author(s):  
Feng Shang ◽  
Xuhui An ◽  
Seji Kawai ◽  
Tetsuya Mishima

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Guohua Xing ◽  
Cheng Zhou ◽  
Tao Wu ◽  
Boquan Liu

To evaluate the bond behavior between the reinforcing bar and surrounding concrete, a total of six-group pullout specimens with plain steel bars and two-group specimens with deformed steel bars, serving as a reference, are experimentally investigated and presented in this study. The main test parameters of this investigation include embedment length, surface type of reinforcing bars, and bar diameter. In particular, the bond mechanism of plain steel reinforcing bars against the surrounding concrete was analyzed by comparing with six-group pullout specimens with aluminium alloy bars. The results indicated that the bond stress experienced by plain bars is quite lower than that of the deformed bars given equal structural characteristics and details. Averagely, plain bars appeared to develop only 18.3% of the bond stress of deformed bars. Differing from the bond strength of plain steel bars, which is based primarily on chemical adhesion and friction force, the bond stress of aluminium alloy bars is mainly experienced by chemical adhesion and about 0.21~0.56 MPa, which is just one-tenth of that of plain steel bars. Based on the test results, a bond-slip model at the interface between concrete and plain bars is put forward.


2016 ◽  
Vol 142 (6) ◽  
pp. 04016027 ◽  
Author(s):  
Xinxin Li ◽  
Zhimin Wu ◽  
Jianjun Zheng ◽  
Abdulmajid Alahdal

2018 ◽  
Vol 159 ◽  
pp. 01017 ◽  
Author(s):  
Nuroji ◽  
Daniel Herdian Primadyas ◽  
Ilham Nurhuda ◽  
Muslikh

This paper describes the research on bond behavior of plain reinforcing bars in geopolymer and normal concrete. The geopolymer concrete in this research was made of class F fly ash taken from Tanjung Jati Electric Steam Power Plant (PLTU) with Sodium Hydroxide (NaOH) and Sodium Silicate (Na2SiO3) as alkaline activator, added in the mixture. The effect of bar size was studied by varying the bar diameter in range 10 mm to 19 mm. Each bar was casted in the center of concrete blocks made of geopolymer as well as normal concrete. Pull-out tests were carried out to the specimens that have reached 28 days of age. The test results show that the bond behavior of geopolymer concrete differs substantially from normal concrete, where geopolymer concrete has a higher bond strength when compared to normal concrete with identical concrete strengths.


Sign in / Sign up

Export Citation Format

Share Document