scholarly journals 2.2. Situating the Swiss Transition Regime

Keyword(s):  
2002 ◽  
Vol 715 ◽  
Author(s):  
N. Wyrsch ◽  
C. Droz ◽  
L. Feitknecht ◽  
J. Spitznagel ◽  
A. Shah

AbstractUndoped microcrystalline silicon samples deposited in the transition regime between amorphous and microcrystalline growth have been investigated by dark conductivity measurement and Raman spectroscopy. From the latter, a semi-quantitative crystalline volume fraction Xc of the sample was deduced and correlated with dark conductivity data in order to reveal possible percolation controlled transport. No threshold was observed around the critical crystalline fraction value Xc of 33%, as reported previously, but a threshold in conductivity data was found at Xc≈50%. This threshold is interpreted here speculatively as being the result of postoxidation, and not constituting an actual percolation threshold.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yaroslava E. Poroshyna ◽  
Aleksander I. Lopato ◽  
Pavel S. Utkin

Abstract The paper contributes to the clarification of the mechanism of one-dimensional pulsating detonation wave propagation for the transition regime with two-scale pulsations. For this purpose, a novel numerical algorithm has been developed for the numerical investigation of the gaseous pulsating detonation wave using the two-stage model of kinetics of chemical reactions in the shock-attached frame. The influence of grid resolution, approximation order and the type of rear boundary conditions on the solution has been studied for four main regimes of detonation wave propagation for this model. Comparison of dynamics of pulsations with results of other authors has been carried out.


2006 ◽  
Vol 374-375 ◽  
pp. 126-129 ◽  
Author(s):  
V. Ksenofontov ◽  
Y. Garcia ◽  
S.J. Campbell ◽  
Y. Boland ◽  
J.S. Lord ◽  
...  

1995 ◽  
Vol 52 (9) ◽  
pp. 6215-6218 ◽  
Author(s):  
A. K. Pradhan ◽  
S. B. Roy ◽  
P. Chaddah ◽  
C. Chen ◽  
B. M. Wanklyn

An experimental study has been made of the gaseous drag torque on an isolated sphere rotating at high Mach numbers. The sphere was suspended electromagnetically and spun by induction. The drag torque has been measured through the transition régime from continuum to free molecule flow at Mach numbers (based on equatorial speed) of up to about five. These high Mach numbers were achieved in heavy vapours (diiodomethane, germanium tetrabromide and stannic bromide) with sonic speed as little as a quarter of that in air. To measure the pressure in the vapour a second (smaller) rotating sphere was used as a pressure gauge. The results agree well with those previously obtained and show an unexpected Mach number dependence in the transition régime.


Sign in / Sign up

Export Citation Format

Share Document