scholarly journals Cytogenetic characterization of Diachasmimorpha longicaudata (Hymenoptera: Braconidae), a parasitoid wasp used as a biological control agent

2013 ◽  
Vol 110 (3) ◽  
pp. 401-409 ◽  
Author(s):  
Leonela CARABAJAL PALADINO ◽  
Alba PAPESCHI ◽  
Silvia LANZAVECCHIA ◽  
Jorge CLADERA ◽  
Maria Jose BRESSA
2021 ◽  
Vol 74 (1) ◽  
pp. 70-77
Author(s):  
Sonia Lee ◽  
Simon V. Fowler ◽  
Claudia Lange ◽  
Lindsay A. Smith ◽  
Alison M. Evans

Douglas-fir seed chalcid (DFSC) Megastigmus spermotrophus, a small (3 mm long) host-specific seed-predatory wasp, was accidentally introduced into New Zealand in the 1920s. Concern over DFSC reducing Douglas-fir seed production in New Zealand led to an attempt at biocontrol in 1955 with the release, but failed establishment, of the small (2.5 mm long) parasitoid wasp, Mesopolobus spermotrophus. We investigated why DFSC causes little destruction of Douglas-fir seed in New Zealand (usually <20%) despite the apparent absence of major natural enemies. Douglas-fir seed collections from 13 New Zealand sites yielded the seed predator (DFSC) but also potential parasitoids, which were identified using morphology and partial COI DNA sequencing. DFSC destroyed only 0.15% of Douglas-fir seed. All parasitoids were identified as the pteromalid wasp, Mes. spermotrophus, the host-specific biocontrol agent released in 1955. Total parasitism was 48.5%, but levels at some sites approached 90%, with some evidence of density-dependence. The discovery of the parasitoid Mes. spermotrophus could indicate that the biocontrol agent released in 1955 did establish after all. Alternatively, Mes. spermotrophus could have arrived accidentally in more recent importations of Douglas-fir seed. The high level of parasitism of DFSC by Mes. spermotrophus is consistent with DFSC being under successful biological control in New Zealand. Suppression of DFSC populations will benefit commercial Douglas-fir seed production in New Zealand, but it also represents the likely loss of a potential biological control agent for wilding Douglas-fir.


2021 ◽  
Vol 87 ◽  
pp. 503-521
Author(s):  
Sarah Birkmire ◽  
Cory Penca ◽  
Elijah J. Talamas ◽  
Matthew R. Moore ◽  
Amanda C. Hodges

Psix striaticeps (Dodd) is an egg-parasitoid wasp previously known only from the Old World. We report this species from twelve counties in Florida, which are the first records in the Western Hemisphere. It was collected in yellow cylinder traps and reared from the eggs of three stink bug species: Nezara viridula L., Chinavia marginata (Palisot de Beauvois), and Piezodorus guildinii (Westwood). A COI barcode analysis found a 100% match between the Floridian population and a specimen from South Africa. The prospects of using Ps. striaticeps as a biological control agent against exotic stink bugs are discussed.


1993 ◽  
Vol 59 (12) ◽  
pp. 4189-4197 ◽  
Author(s):  
Joyce E. Loper ◽  
Carol A. Ishimaru ◽  
Susan R. Carnegie ◽  
Apichart Vanavichit

2019 ◽  
Vol 79 (3-4) ◽  
pp. 395-404 ◽  
Author(s):  
Jani Jukka Sormunen ◽  
Ella Sippola ◽  
Kari Mikael Kaunisto ◽  
Eero Juhani Vesterinen ◽  
Ilari Eerikki Sääksjärvi

AbstractIxodiphagus hookeri (Hymenoptera: Encyrtidae) is a parasitoid wasp specialized in parasitizing the larvae and nymphs of ticks (Acari: Ixodidae). As parasitized ticks die prior to reproduction, I. hookeri is seen as a prime biological control agent candidate. Despite this, little is known of their occurrence or ecology in northern Europe. The main aim of the current study was to determine whether adult wasps or parasitized ticks can be found from a tick-infested island in southwestern Finland, using field collections and molecular methods. Following the initial discovery of an adult I. hookeri female on Seili Island, we set out to collect further specimens via sweep netting and Malaise trappings between May and October 2017. Furthermore, 1310 Ixodes ricinus (1220 nymphs, 90 adults) collected from the island during 2012–2014 were screened for I. hookeri DNA using qPCR. Whereas no further wasp specimens could be collected via sweep netting or Malaise trappings, I. hookeri DNA was consistently detected in I. ricinus nymphs (annual minimum infection rates in 2012, 2013, and 2014: 2.3, 0.4, and 0.5%, respectively), whereas all adult samples were negative. Although the annually repeated detections of parasitized ticks suggest that the wasp inhabits the island, further field and molecular surveys are needed to more comprehensively determine the status and stability of the population.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 144 ◽  
Author(s):  
Liangde Tang ◽  
Jimin Liu ◽  
Lihui Liu ◽  
Yonghao Yu ◽  
Haiyan Zhao ◽  
...  

Diachasmimoorpha longicaudata (Ashmead, D. longicaudata) (Hymenoptera: Braconidae) is a solitary species of parasitoid wasp and widely used in integrated pest management (IPM) programs as a biological control agent in order to suppress tephritid fruit flies of economic importance. Although many studies have investigated the behaviors in the detection of their hosts, little is known of the molecular information of their chemosensory system. We assembled the first transcriptome of D. longgicaudata using transcriptome sequencing and identified 162,621 unigenes for the Ashmead insects in response to fruit flies fed with different fruits (guava, mango, and carambola). We annotated these transcripts on both the gene and protein levels by aligning them to databases (e.g., NR, NT, KEGG, GO, PFAM, UniProt/SwissProt) and prediction software (e.g., SignalP, RNAMMER, TMHMM Sever). CPC2 and MIREAP were used to predict the potential noncoding RNAs and microRNAs, respectively. Based on these annotations, we found 43, 69, 60, 689, 26 and 14 transcripts encoding odorant-binding protein (OBP), chemosensory proteins (CSPs), gustatory receptor (GR), odorant receptor (OR), odorant ionotropic receptor (IR), and sensory neuron membrane protein (SNMP), respectively. Sequence analysis identified the conserved six Cys in OBP sequences and phylogenetic analysis further supported the identification of OBPs and CSPs. Furthermore, 9 OBPs, 13 CSPs, 3 GRs, 4IRs, 25 ORs, and 4 SNMPs were differentially expressed in the insects in response to fruit flies with different scents. These results support that the olfactory genes of the parasitoid wasps were specifically expressed in response to their hosts with different scents. Our findings improve our understanding of the behaviors of insects in the detection of their hosts on the molecular level. More importantly, it provides a valuable resource for D. longicaudata research and will benefit the IPM programs and other researchers in this filed.


2020 ◽  
Vol 115 (1) ◽  
pp. 97
Author(s):  
Asgar EBADOLLAHI ◽  
Reza SADEGHI

<p><strong></strong>The parasitoid wasp <em>Aphelinus mali</em>,Haldeman, 1851 (Hymenoptera: Aphelinidae) is the most important biological control agent against the woolly apple aphid,<em> Eriosoma lanigerum</em> (Hausemann, 1802) (Hemiptera: Aphididae), which is an important apple orchards pest throughout the world. Based on the importance of using low-risk compounds to protect beneficial agents, the present study was carried out to evaluate the toxic and repellent effects of two conventional chemicals (imidacloprid and thiacloprid) and coconut-derived biopesticide soap (Palizin<sup>Ò</sup>) toward <em>A. mali</em>. The results of residual bioassays on apple leaf discs indicated that imidacloprid after 24 h and insecticide soap after 72 h exposure time categorized at the highest and no/little toxicity rates, respectively. Ingestion bioassays on filter papers revealed that imidacloprid and thiacloprid had moderate toxicity rate, while insecticide soap had a low-level toxicity rate. Repellency test at Y-tube olfactometer showed that the repellent effects of both chemicals were more than that of insecticide soap. It is concluded that coconut-derived soap was compatible with the parasitoid activity, and the caution should be paid when including the two neonicotinoid insecticides imidacloprid and thiacloprid for <em>E. lanigerum</em> management.</p>


2019 ◽  
Vol 48 (3) ◽  
pp. 489-495 ◽  
Author(s):  
Aspen N Kremer ◽  
Bethia H King

Abstract Spalangia endius Walker is a parasitoid wasp that is commercially available as a biological control agent for filth fly pests in livestock-rearing operations. Imidacloprid is often used to control these flies. The present study examined the sublethal effect of field-realistic concentrations of imidacloprid on mating behavior, offspring sex ratios, and male preference for virgin females. After exposure to imidacloprid, S. endius females that survived were less likely to mate than control females, which will result in male-biased sex ratios because only mated females can produce daughters. Males did not avoid exposed females, but exposed females were almost always unreceptive. Males that survived exposure to imidacloprid exhibited reduced mating competitiveness against unexposed males. However, if an exposed male mated, his mate’s sex ratio and ability to control flies was unaffected. Exposed males were also still able to discriminate against mated, and thus usually unreceptive, females. Together with previous studies, these results suggest that not only does imidacloprid reduce the ability of S. endius females to survive and parasitize hosts, but when an exposed female does survive and parasitize hosts, she is likely to produce just sons, because of her lack of receptivity. More-male-biased populations of S. endius will decrease their efficacy for fly control. Thus, the use of imidacloprid along with this parasitoid may be financially inefficient for pest management.


Sign in / Sign up

Export Citation Format

Share Document