scholarly journals Expansion of the universe and its correlation with dark energy

2020 ◽  
Vol 8 (1) ◽  
pp. 10
Author(s):  
Puja Tiwari ◽  
Prof . M.N Bandyopadhyay ◽  
Satakshi Chatterjee ◽  
Prof. S. N. Bandyopadhyay

The Universe is expanding and science has got the relevant amount of evidence to prove that. The red shift of the distant galaxies prove that the Universe is expanding and at a good rate. The trouble is not with the expansion rather the force that is helping in this expansion. The Four Forces that is understood by physics are Gravitational Force, Electromagnetic Force, The Weak Force and The Strong Force. The four forces mentioned above unfortunately does not help in understanding the expansion of the Universe even after 13.8 billion years from the Big Bang. Initially it was thought that the Universe had an exponential expansion just after the Big Bang and this expansion will slow down before Gravity starts contracting the Universe. Well this theory got a setback after the Red Shift of the Galaxies showed that the Universe is still expanding.The expansion is happening still which means that the Gravitational Force is not being able to drift the galaxies towards one another. So what could be the unknown force that is repelling the galaxies from one another? Scientists have been working on this issue and many new concepts have been developed. Many scientists have argued that there is some force that is repelling the Universe but understanding this force has been difficult till now. Major scientists now agree that there is a force that is repelling the Universe and this force is not the four fundamental forces that are known to us. They have termed this force as the Dark Energy.What is this Dark Energy is a haunting question in today’s world. Only around 5% of the observable Universe is known till date. The rest around 95% is still a mystery to us. Of that 95% around 68% is Dark Energy. So the importance of understanding this force is the need of the hour. This force can tell a lot about the formation of the Universe from the start or it can even enlighten us if the Universe is eternal.The issue is as of now, this Dark Energy is hypothetical in nature as it has not been seen or felt by the instruments available to science today. The idea of Dark Energy goes to explain the expansion of the Universe, if Dark Energy is taken as some sort of Anti- Gravitational Force.Einstein’s theory of relativity talks of how space and time is intermingled with gravity. According to this theory space time gets modified due to the amount of matter that falls into the space. So if a planet sits on a space in the Universe it will cause a deviation in the space time field in such a way that it will accommodate the matter of the planet. So Einstein placed time as the fourth dimension and showed its importance in space. This theory stands true in majority of the cases in the Universe. The only hurdle being that inside the Black Hole this theory falters.Einstein and Schrodinger did interact with one another after he had understood that the Universe was expanding through the theory presented by Hubble. Earlier Einstein had stated that the Universe was Static. To counter the exigency that space time changes with matter he had proposed a constant by the name Cosmological Constant. Later he took the constant away stating that it was his blunder not to understand that the Universe was Expanding. Schrodinger had proposed to put the Cosmological Constant in the right side of the equation. This meant the constant may change with time and be considered more of a variable force. Though, Einstein later did not agree to the idea. Still it can be considered that both of them were talking about an extra force but could not come to any conclusion on this.Einstein in his special relativity theory had talked of conversion of energy to matter with his famous equation, E=mc^2. This meant that energy can be formed by matter and matter can be converted into energy. Though energy created from matter can be seen in Atom Bomb but matter created from energy is not seen. This paper will try to show how matter can be created from energy where Dark Energy acts as a Catalyst.This paper also tries to analyze the concept of Dark Energy as a non interacting supermassive energy (NISE). The paper will try to see the relationship between expanding Universe and Dark energy. The paper will try to develop a new spectrum that can make Dark Energy or NISE as stated in the paper visible or understandable. The paper will also like to see the relationship between Dark Energy and Photon. The paper will try to show how energy is converted from matter with the help of Dark Energy. 

2015 ◽  
Vol 3 (1) ◽  
pp. 40
Author(s):  
Hasmukh Tank

<p>Astronomical observations of the cosmological red-shift are currently interpreted in terms of ‘expansion of universe’ and ‘accelerated-expansion of the universe’, at the rate of <em>H<sub>0</sub> c</em>; here <em>H<sub>0</sub></em> is Hubble’s constant, and c is the speed of light. Whereas a straight-forward derivation presented here suggests that: rather it is the photon which is decelerating, at the rate of <em>H<sub>0</sub> c</em>. Such a deceleration of photons can be caused by virtual electrons, positrons and pi-mesons, contained in the extra galactic quantum vacuum, because: they do have gravitational-acceleration of the same order as <em>H<sub>0</sub> c</em> at their “surfaces”; or by decay of a photon into a lighter photon and a particle of mass <em>h H<sub>0</sub> / c<sup>2</sup></em>. Tired-light interpretations of the cosmological red-shift’ were so far considered as not compatible with the observations of ‘time-dilation of super-novae light-curves’; so in a paper titled: “Wave-theoretical insight into the relativistic ‘length-contraction’ and ‘time-dilation of super-novae light-curves’” (Tank, Hasmukh K. 2013), it has been already shown that any mechanism which can cause ‘cosmological red-shift’ will also cause ‘time-dilation of super-novae light-curves’.  Therefore, we now need not to remain confined to the Big-Bang model of cosmology.</p>


2021 ◽  
Author(s):  
Carlos A. Melendres

Abstract We present a physico-chemical approach towards understanding the mysteries associated with the Inflationary Big Bang model of Cosmic evolution based on a theory that space consists of energy quanta. We use thermodynamics to elucidate the expansion of the universe, its composition, and the nature of dark energy and dark matter. The universe started from an atomic size volume of space quanta at very high temperature. Upon expansion and cooling, phase transitions resulted in the formation of fundamental particles, and matter which grow into stars, galaxies, and clusters due to gravity. From cooling data on the universe, we constructed a thermodynamic phase diagram of composition of the universe, from which we obtained a correlation between dark energy and the energy of space. Using Friedmann’s equations, our Quantum Space model fitted well the WMAP data on cosmic composition with an equation of state parameter, w= -0.7. The expansion of the universe was adiabatic and decelerating during the first 7 billion years after the Big Bang. It accelerated due to the dominance of dark energy at 7.25 x 109 years, in good agreement with BOSS measurements. Dark Matter is identified as a plasma form of matter similar to that which existed before recombination and during reionization.


Author(s):  
Carlos Melendres

We present a thermodynamic approach in modeling the evolution of the universe based on a theory that space consists of energy quanta, the spaceons. From wave-particle duality, they can be treated as an ideal gas. The model is similar to the Big Bang but without Inflation. It provides an insight into the nature of dark energy and dark matter, and an explanation for the accelerated expansion of the universe. The universe started from an atomic size volume of spaceons at very high temperature and pressure. Upon expansion and cooling, phase transitions occurred resulting in the formation of fundamental particles, and matter. These nucleate and grow into stars, galaxies, and clusters due to the action of gravity. From the cooling curve of the universe we constructed a thermodynamic phase diagram of cosmic composition, from which we obtained the correlation between dark energy and the energy of space. Using Friedmann&rsquo;s equations, our model fits well the WMAP data on cosmic composition with an equation of state parameter, w= -0.7. The dominance of dark energy started at 7.25 x 109 years, in good agreement with BOSS measurements. The expansion of space is attributed to a scalar quantum space field. Dark Matter is identified as a plasma form of matter similar to that which existed during the photon epoch, prior to recombination. The thermodynamics of expansion of the universe was adiabatic and decelerating during the first 7 billion years after the Big Bang; it accelerated thereafter. A negative pressure for Dark Energy is required to sustain the latter. This is consistent with the theory of General Relativity and the law of conservation of energy. We propose a mechanism for the acceleration as due to consolidation of matter forming Dark Energy Stars (DES) and other compact objects. The resulting reduction in gravitational potential energy feeds back energy for the expansion. Space will continue to expand and dark energy will undergo phase transition to a Bose-Einstein condensate, a superfluid form of matter. Self-gravitation can cause a bounce and start a new Big Bang. We show how the interplay of gravitational and space forces leads to a cyclic, maybe eternal, universe.


Author(s):  
Michael Kachelriess

The contribution of vacuum fluctuations to the cosmological constant is reconsidered studying the dependence on the used regularisation scheme. Then alternative explanations for the observed accelerated expansion of the universe in the present epoch are introduced which either modify gravity or add a new component of matter, dubbed dark energy. The chapter closes with some comments on attempts to quantise gravity.


2019 ◽  
Vol 127 ◽  
pp. 02009
Author(s):  
Boris Shevtsov

Nonlinear oscillations in the dynamic system of gravitational and material fields are considered. The problems of singularities and caustics in gravity, expansion and baryon asymmetry of the Universe, wave prohibition of collapse into black holes, and failure of the Big Bang concept are discussed. It is assumed that the effects of the expansion of the Universe are coupling with the reverse collapse of dark matter. This hypothesis is used to substantiate the vortex and fractal structures in the distribution of matter. A system of equations is proposed for describing turbulent and fluctuation processes in gravitational and material fields. Estimates of the di usion parameters of such a system are made in comparison with the gravitational constant.


2012 ◽  
Vol 21 (13) ◽  
pp. 1250088 ◽  
Author(s):  
SK. MONOWAR HOSSEIN ◽  
FAROOK RAHAMAN ◽  
JAYANTA NASKAR ◽  
MEHEDI KALAM ◽  
SAIBAL RAY

Recently, the small value of the cosmological constant and its ability to accelerate the expansion of the universe is of great interest. We discuss the possibility of forming of anisotropic compact stars from this cosmological constant as one of the competent candidates of dark energy. For this purpose, we consider the analytical solution of Krori and Barua metric. We take the radial dependence of cosmological constant and check all the regularity conditions, TOV equations, stability and surface redshift of the compact stars. It has been shown as conclusion that this model is valid for any compact star and we have cited 4U 1820-30 as a specific example of that kind of star.


1977 ◽  
Vol 3 (2) ◽  
pp. 100-101 ◽  
Author(s):  
R. D. Brown

There have been a number of attempts made in the last decade or two to observe deuterium in parts of the universe other than here in Earth. It is of interest merely to detect deuterium elsewhere just as it is to detect the occurrence of any nuclide. However in the case of deuterium there is a special interest because in big-bang cosmologies the great majority of deuterium in the universe is considered to have been formed in the initial fireball (Wagoner, 1973). Any observation of the present abundance of deuterium thus might give information about the very early stages of the creation of the universe. Detailed studies of nucleosynthesis during the early expansion of hot big-bang universes have however indicated a particular feature of deuterium production. (Fig. 1) The mass fraction produced X(D) is a very sensitive function of the size of the universe, as measured say by the present baryon density ϱb. Other nuclides that are mainly produced in the early expansion, such as 4He, have mass fractions less dependent on ϱb. Thus if we adopt the big-bang model for our universe we can determine ϱb from observations of X(D). Apart from any intrinsic interest in the present density of the’universe, there is considerable interest in whether the value is great enough for the present expansion to halt and go over to a collapse — or so small that the expansion of the universe will go on forever.


1986 ◽  
Vol 7 ◽  
pp. 27-38 ◽  
Author(s):  
Vera C. Rubin

Thirty years ago, observational cosmology consisted of the search for two numbers: Ho, the rate of expansion of the universe at the position of the Galaxy; and qo, the deceleration parameter. Twenty years ago, the discovery of the relic radiation from the Big Bang produced another number, 3oK. But it is the past decade which has seen the enormous development in both observational and theoretical cosmology. The universe is known to be immeasurably richer and more varied than we had thought. There is growing acceptance of a universe in which most of the matter is not luminous. Nature has played a trick on astronomers, for we thought we were studying the universe. We now know that we were studying only the small fraction of it that is luminous. I suspect that this talk this evening is the first IAU Discourse devoted to something that astronomers cannot see at any wavelength: Dark Matter in the Universe.


2011 ◽  
Vol 03 ◽  
pp. 195-202
Author(s):  
M. D. MAIA

The concept of deformation of Riemannian geometry is reviewed, with applications to gravitation and cosmology. Starting with an analysis of the cosmological constant problem, it is shown that space-times are deformable in the sense of local change of shape. These deformations leave an observable signature in the space-time, characterized by a conserved tensor, associated with a tangent acceleration, defined by the extrinsic curvature of the space-time. In the applications to cosmology, we find that the accelerated expansion of the universe is the observable effect of the deformation, dispensing with the cosmological constant and its problems.


Sign in / Sign up

Export Citation Format

Share Document