alkaline feldspar
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 7)

H-INDEX

2
(FIVE YEARS 1)

2021 ◽  
Vol 906 (1) ◽  
pp. 012085
Author(s):  
Vera Trunilina

Abstract The earliest Mesozoic granitoid formations of the Verkhoyansk-Kolyma orogenic region are derivatives of the Late Jurassic-Early Cretaceous gabbro-diorite-granodiorite formation, involvinggold and polymetallic mineralization. Late Cretaceous alkaline-feldspar or alkaline granites with associated rare-earth mineralization complete the granitoid magmatism of the region. The Agdai massif, which combines both of the mentioned groups of rocks, was the object of our research. Therefore, understanding their petrological and genetic features is of great interest. It is determined that the eastern part of the massif is composed of diorites and granodiorites and includes autoliths and xenoliths of gabbro-diorite composition. The isotopic K-Ar age of gabbro-diorites is 154Ma, diorites –148 Ma, granodiorites –117–124 Ma, and dike granites – 114 Ma. The rocks are characterized bydisequilibrium mineral assemblages: early magmatic pyroxene-Labrador, typical for the basic rocks, and late - micropegmatite granitoid. The origin of the parent melts occurred within the lower crust in amphibolite substrates at temperatures of 1000–1150°C and a pressure of 1.4-1.6 GPa under the influence of the mantle main melt and the partial mixing of the latter with the resulting crustal melt. The western part of the outcrop was formed at the beginning of the Late Cretaceous (the isotopic K-Ar age of the granites is 92+/-3 Ma) and is composed of alkaline feldspar leucogranites. According to all petro - and geochemical parameters, the rocks are defined as post-orogenic or rift-related granites of the A-type. The presence of inclusions of pyroxene-labrador composition, titanomagnetite, zircon of morphotype D and the ratio of the basic petrochemical parameters allow us to refer them to A-type granites related to continental rifting. High melt temperatures (990-1030°C) at relatively low pressures during magma generation (0.7–0.8 GPa) could be achieved only when additional heat was supplied from an external (deep) source. The presence of nonequilibrium mineral associations indicates a possible syntax of the granite and the main melt. In general, the Agdai massif is a polyformational, polygenic structure formed by the intrusion of melts through common or closely located magma conduits.


EKSPLORIUM ◽  
2020 ◽  
Vol 41 (2) ◽  
pp. 73
Author(s):  
Windi Anarta Draniswari ◽  
Sekar Indah Tri Kusuma ◽  
Tyto Baskara Adimedha ◽  
I Gde Sukadana

ABSTRAK Anomali radiometri telah ditemukan di area Sungai Amplas pada bongkah batuan vulkanik. Nilai yang terukur dari spektrometer gama adalah 787 ppm eU dan 223 ppm eTh. Penemuan ini menarik untuk pengembangan eksplorasi. Studi lebih lanjut diperlukan untuk mengetahui karekteristik batuan pembawa mineral radioaktif dari sampel in-situ. Penelitian ini bertujuan untuk mengetahui karakteristik petrologi dan geokimia batuan vulkanik Ampalas sebagai studi awal untuk mengetahui proses akumulasi mineral radioaktif pada batuan vulkanik Ampalas. Metodologi yang digunakan meliputi pengamatan lapangan, pengambilan sampel batuan, analisis petrografi dan X-Ray Fluorescence (XRF). Batuan vulkanik ampalas tersusun atas ponolit, foidit, dan foid-syenit. Tekstur batuannya terdiri dari porfiritik, aliran, rim piroksen, zoning, pseudo-leusit, korosi, inklusi mafik, dan sieve. Karakteristik geokimia menunjukkan alkalinitas tinggi dan indikasi pengayaan mineral radioaktif yang tersebar dalam batuan. Proses magmatis yang berperan dalam pembentukan batuan vulkanik adalah fraksionasi kristal (fraksionasi leusit dan alkali felspar), asimilasi kerak kontinen, dan pencampuran magma. Interaksi antara magma dan kerak menyebabkan diferensiasi magma berkelanjutan yang menghasilkan akumulasi uranium dan torium lebih tinggi.ABSTRACT Anomalous radiometry has been found in Ampalas River Area on volcanic rock boulder. The values measured from gamma spectrometer are 787 ppm eU and 223 ppm eTh. This discovery is promising for exploration development. Further study need to figure the radioactive mineral bearing rock characteristic from in-situ samples. The research aim is to determine the petrology and geochemical characteristics of Ampalas volcanic rocks as preliminary study to find radioactive mineral accumulation process of Ampalas volcanic rocks. The methodologies are field observation, rock sampling, petrography, and X-Ray fluorescence (XRF) analyses. The Ampalas volcanic rocks consist of phonolite, phoidite, and phoid syenite. Their textures are porphyritic, flow, pyroxene rim, zoning, pseudo-leucite, corrosion, mafic inclusions, and sieve. The geochemical characteristics show high alkalinity and radioactive mineral enrichment disseminating on rock. The magmatic processes which play a significant role in radioactive mineral-bearing rocks formation are crystal fractionations (leucite and alkaline feldspar fractionations), continental crust assimilation, and magma mixing. Long interaction between magma and crust creates advanced magma differentiation causing higher uranium and thorium accumulation.  


2020 ◽  
Vol 9 (2) ◽  
pp. 66
Author(s):  
Diontar Mbaihoudou ◽  
Kwékam Maurice ◽  
Fozing Eric Martial ◽  
Kagou Dongmo Armand ◽  
Tcheumenak Kouémo Jules

The granitoids of Guéra Massif are composed of biotite-granite, amphibole-biotite granite and gabbro-diorite and commonly contain micro granular mafic enclaves which vary from monzogabbro to syenite composition. They are metaluminous, high-K calc-alkaline to shoshonitic series. Gabbro-diorite rocks are magnesian while amphibole-biotite granites are magnesian to ferroan, and biotite granites are ferroan. They are enriched in LREEs relative to HREE and display negative anomalies in Nb, Ta and Ti. Fields relationships, petrology and geochemistry indicate that mixing and mingling processes could be more relevant for the genesis of granitoids associated to fractional crystallization. Thus, the presence of mafic enclaves of gabbro-diorite composition in the granites, the resumption of alkaline feldspar xenocrystals in the gabbro-diorites, as well as the linear correlation between the granites and the gabbro-diorites and the intermediate position of the mafic enclaves between the two formations, enable us to propose magmatic mixing as the major process that presided over the evolution of the Guéra granitoids. The delamination of the continental lithosphere during the post-collisional phase of the Pan-African orogeny would have caused the partial melting of the subduction-modofied mantle and lower continental crust and thus produced the magmas of the Guéra granitoids.


2020 ◽  
Vol 41 ◽  
pp. 12-31
Author(s):  
S.G. Kryvdik ◽  
◽  
O.V Dubyna ◽  
◽  

It was made an attempt to generalize geochemical data of Nb and Ta concentration in the most common igneous rocks of the Ukrainian Shield (USh). In the majority of widely distributed rocks of the USh (normal and subalkaline granitoids) the Nb and Ta concentration are similar to upper crust but lower the accepted Clark value for acidic rocks. In the more differentiated rapakivi granites concentrations of these elements reach or exceed the Clark’s concentrations (up to 35 ppm). Only highly differentiated alkaline rocks and alkaline feldspar granites (Perga, Kamiani mogyly, Ruska Poliana massifs) have high Nb concentrations (up to 800, 120 and 370 ppm, respectively). Medium rocks of the normal range are the least geochemically studied and typically are characterized low Nb and Ta concentrations. Almost all gabbroids as well as their metamorphosed analogues in the greenstone structures, are characterized by very low Nb (and Ta) concentration (two or more orders of magnitude) compared with Clark’s values for basic rocks (20 ppm Nb and 0.48 ppm Ta) according to A.P. Vinogradov. Against this background, increased of Nb and Ta concentration is observed in the main rocks of anorthosite-rapakivi-granite plutons. Howover even in these rocks concentration of these elements rarely reach or does not achieve the values which are typical for subalkaline and alkaline basalts of continental rifts. The regional heterogeneity in Nb and Ta distribution is observed in alkaline rocks of different composition: in the Azov Sea region these rocks are characterized by high concentrations, while in the western part of the USh the content of these elements is extremely low. The increased concentration of these elements is also revealed in kimberlites from the Azov Sea region and the Kyrovohrad megablock of the USh. The authors give some considerations and assumptions about the dependence on geochemical features of the Precambrian igneous rocks of the USh from the geodynamic conditions of their formation.


2020 ◽  
Vol 41 ◽  
pp. 32-41
Author(s):  
S.I. Kurуlo ◽  
◽  
N.M. Lуzhachenko ◽  
S.M. Bondarenko ◽  
V.O. Syomka ◽  
...  

The three type of rare-metal pegmatites are know in Stankuvatske ore field (Ingul megablock, the Ukraianian Shield), such as: Li-bearing, Bi-As-U and Ta-Nb pegmatites. For the first time Ta-Nb mineralisation from Ta-Nb bearing albite-K-Feldspar rare metal pegmatite have been described. Investigated pegmatite is located on the Norh-West frame of the Lypnazky granitemigmatite massive among hosted amphibolites. Rare-metal pegmatite doesn’t have obvious zonality and consist of alkaline feldspar, biotite, muscovite, dark to black colour quartz, blue-greenish apatite, nigerite, gachnite, tourmaline, monazite. The primary ferrocolumbite and Nb-rutile-II have undergone strong hydrothermal alteration. Thus primary rutile-II decomposed with formation of skeletal intergrowths of secondary cassiterite and rutile-III with a much lower volume of Nb and Ta under the influence of hydrothermal fluid. Primary homogenous Nb-rutile-I (Nb2O5+Ta2O5 from 33,5 to 42,9 wt.%) exsolved a fine trellis-like pattern and lamellar of Nb-pure rutile-III, cassiterite and Mn-rich ilmenite. The Nb-rutile-II is occurred in tabular grains with unclear internal zonation. Primary ferrcolumbite breakdown to Ti-ixiolite and Nb-rutile-III. Primary oscillatory zonality is transformed into irregularly patchy and veinlety. Recrystallized ferrotantalite is secondary and uncommon mineral. Ferrocolumbite contains 2.93 to 4.74 wt.%TiO2, and titanian ixiolite 7,33-10,76 wt.%. The (Ti,Nb)>Ta mineral assemblages, and compositional trend of columbite with very low Ta/(Ta+Nb) and Mn/ (Mn+Fe) imply a general low level of fractionation in comparison with typical beryl-columbite rare-metal pegmatites.


2019 ◽  
Vol 38 (6) ◽  
pp. 872-882
Author(s):  
Meirong Li ◽  
Chenchu Li ◽  
Juntao Xing ◽  
Xiuting Sun ◽  
Guanghui Yuan ◽  
...  

2019 ◽  
Vol 41 (1) ◽  
pp. 35-48 ◽  
Author(s):  
I.M. GERASIMETS ◽  
H.O. KULCHYTSKA ◽  
V.M. BELSKYI

2017 ◽  
Vol 1 (T2) ◽  
pp. 114-123
Author(s):  
Minh Pham ◽  
Hieu Trung Pham ◽  
Hoang Kim Nguyen

Alkaline granites of the Muong Hum are distributed mainly in the NW Phan Si Pan zone. The granite closely has striped or clear gneissoid structures, coinciding with general NW-SE trends. It consists mainly of plagioclase (~20–30 %), alkaline feldspar (~30–50 %), quartz (~20–25 %), biotite (~1–5 %), aegirine (~1–3 %), and riebeckite (~1–2 %). It has 10,000×Ga/Al ratios of 4.70–4.93, A/CNK values of 0.87–0.90, and negative Eu-anomalies as well as apparent depletion of Ba, Sr, Ti, and P. The mineral assemblages and chemical characteristics show that it is typical of A-type granites. Compared with other adjacent Late Permian to Early Triassic A-type granitic plutons, geochemical characteristics of the Muong Hum granite are similar to the Phu Sa Phìn, Phan Si Pan, Ye Yen Sun, and Nam Xe-Tam Duong granites in NW Vietnam as well as the Taihe, and Panzhihua granites in SW China. Thus, the Phan Si Pan zone must have been a displaced portion of the Emeishan large igneous province. This might be a direct result of the left-lateral Cenozoic Red River shear zone.


Mineralogia ◽  
2013 ◽  
Vol 44 (3-4) ◽  
pp. 115-124 ◽  
Author(s):  
Aleksandr N. Ponomarenko ◽  
Stepan G. Kryvdik ◽  
Aleksandr V. Grinchenko

AbstractThe Ukrainian Shield (USh) is a typical province of Proterozoic alkaline magmatism where about 50 massifs and occurrences of alkaline rocks and carbonatites have been found. In spite of the wide distribution of Devonian basaltic- and alkaline magmatic rocks in the Dnieper-Donetsk depression adjacent to the USh, and in a marginal zone of the USh adjacent to folded Donbass, only alkaline rocks of Proterozoic age (1.8-2.1 Ga) that have been identified in the central interior of the USh. Some discrete bodies of 2.8 Ga subalkaline rocks also occur in Bogdanivka massif (Azov area). Occurrences of both Proterozoic (prevailing) and Phanerozoic (Devonian) alkaline rocks and kimberlites are only found in the eastern part of the USh (Azov area). Kimberlites in the central part of the Ukrainian Shield (Kirovograd region) are also of Proterozoic age (ca 1.8 Ga). It is this predominance of Precambrian rocks that makes the USh so different from other alkaline provinces where Phanerozoic alkaline rocks and kimberlites commonly prevail over Precambrian rocks. The lack of Phanerozoic alkaline magmatism on USh is poorly understood. Two main complexes of alkaline rocks - alkaline-ultrabasic (carbonatitic) and gabbro- syenitic - are distinguished in the USh. There are also rare occurrences of rock types such as alkaline- and alkaline-feldspar granites that may represent one separate alkaline-granite complex. Alkaline rocks present in the Eastern (Azov) province and in the Western province display essentially different geochemical character. Those of the Eastern province show characteristics typical of alkaline-ultrabasic rocks (e.g. high contents of incompatible rare elementssuch as Nb, REE, Zr, Y, Sr, whereas those in the Western province are characterized by low contents of Nb and Zr, and REE in some cases. This fact is interpreted as reflecting different geodynamic conditions of their origin. The Eastern rocks were formed in rift settings, the Western rocks in crustal compressional settings (collision, subduction). Various mineral deposits of phosphorus (apatite), niobium, REE, yttrium and zirconium, including unusually rich ores of REE, Y and Zr (Azov and Yastrybetsky) are associated with the alkaline rocks and carbonatites of the USh.


Sign in / Sign up

Export Citation Format

Share Document