scholarly journals Optimization noise figure of fiber Raman amplifier based on bat algorithm in optical communication network

2018 ◽  
Vol 7 (2) ◽  
pp. 874 ◽  
Author(s):  
Hamid Ali Abed Al-Asadi ◽  
Majida Ali Al-Asadi ◽  
Nada Ali Noori

Designing Raman amplifier with high On-Off again and low noise figure is required in in optical communication networks, due to wide and tunable amplification and low nonlinearity. This paper proposes a new configuration design to the single mode fiber Raman amplifier using a multi-objective bat algorithm. The main aim of the proposed method is to preserve the values of noise figure and ripple of the amplifier as low as possible while keeping the values of laser wavelength and the amplifier powers are high. The simulation results show that increasing the number of iterations is required, which would result in a flat gain spectrum with a considerable enhancement in the noise figure and minimal gain ripple that reaches to less than 0.18 DB.  

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Georgii S. Felinskyi ◽  
Mykhailo Y. Dyriv

The formation dynamics of the optical noise in a silica single mode fiber (SMF) as function of the pump power variation in the counter pumped fiber Raman amplifier (FRA) is experimentally studied. The ratio between the power of amplified spontaneous emission and the power of incoherent optical noise is quantitatively determined by detailed analysis of experimental data in the pump powers range of 100–300 mW within the full band of Stokes frequencies, including FRA working wavelengths over the C + L transparency windows. It is found out the maximum of Raman gain coefficient for optical noise does not exceed ~60% of corresponding peak at the gain profile maximum of coherent signal. It is shown that the real FRA noise figure may be considerably less than 3 dB over a wide wavelength range (100 nm) at a pump power of several hundreds of mW.


2015 ◽  
Vol 23 (26) ◽  
pp. 33705 ◽  
Author(s):  
Malcolm W. Wright ◽  
Jeffery F. Morris ◽  
Joseph M. Kovalik ◽  
Kenneth S. Andrews ◽  
Matthew J. Abrahamson ◽  
...  

Author(s):  
Salil Pradhan ◽  
John Arbulich ◽  
K. Srihari

In metro and long haul networking applications, Erbium Doped Fiber Amplifiers (EDFAs) are used to amplify weak optical signals. Manufacturing of EDFAs is primarily a fusion splicing process in which both Single Mode Fibers (SMFs) and Erbium Doped Fibers (EDFs) are utilized. One of the critical operations is the splicing of an SMF to an EDF, a dissimilar fiber splicing process. Splice losses between these fibers need to be optimized, and the process is highly reliant on the properties of the EDF. Mode Field Diameter (MFD), spectral attenuation at peak wavelength and concentration of erbium along its length vary from batch to batch. The splice loss is dependent on some of these properties and must be taken into consideration. With this background, research was conducted to study the properties of EDFs and its applicability in the splicing process. Having considered the characteristics of the EDF in different wavelength regions, experiments were designed to optimize the losses between an SMF and an EDF. In the C-band (1525–1565 nm), erbium atoms absorb most of the transmitted power (in absence of a 980/1480 nm laser pump). Splice losses measured in these regions are dependent upon the absorption properties and would not depict a true picture of the splice loss. Since the incident power is absorbed, an alternate approach would be to launch extremely low power (<−27 dBm). In this case, the absorption losses should be minimal. As C-band is highly absorptive, launching power in the range of 1310 nm would be another possible scenario. The ‘cutback’ method was also employed to determine the losses in the C-band region. Statistical methods such as the Design of Experiments (DOE) were used to study the properties of the EDF and its response to various splicing parameters and wavelengths. Splice loss trends at various power levels were also investigated. The primary intent of these experiments was to translate the results and their utility into the manufacturing of EDFAs, wherein a multitude factors creep into the splicing scenario. The best method would be the one that consistently yields a low splice loss, since these are critical to minimize the noise figure of the EDFA.


2019 ◽  
Vol 6 (3) ◽  
pp. 167-175 ◽  
Author(s):  
Salim Burdah ◽  
Octarina Nur Samijayani ◽  
Ary Syahriar ◽  
Rizki Ramdhani ◽  
Rahmat Alamtaha

Sign in / Sign up

Export Citation Format

Share Document