Review of indoor localization techniques

2018 ◽  
Vol 7 (2.14) ◽  
pp. 201 ◽  
Author(s):  
Marina Md Din ◽  
Norziana Jamil ◽  
Jacentha Maniam ◽  
Mohamad Afendee Mohamed

Global Positioning System (GPS) has practically solved the problem of outdoor localization. However, limitation of GPS leads to a challenge for developing a new tracking system for indoor environment. Hence, the demand for accurate indoor localization services has become important. Until now, researches related to IPS are still being conducted with the objective to improve the performance of positioning techniques. This paper provides a comprehensive review of indoor localization techniques and stimulate new research effort in this field. Current existing indoor localization system that used for tracking objects were reviewed along with some further discussion to design a better indoor localization technique.

Recently, indoor localization has witnessed an increase in interest, due to the potential wide range of using in different applications, such as Internet of Things (IoT). It is also providing a solution for the absence of Global Positioning System (GPS) signals inside buildings. Different techniques have been used for performing the indoor localization, such as sensors and wireless technologies. In this paper, an indoor localization and object tracking system is proposed based on WiFi transmission technique. It is done by distributing different WiFi sources around the building to read the data of the tracked objects. This is to measure the distance between the WiFi receiver and the object to allocate and track it efficiently. The test results show that the proposed system is working in an efficient way with low cost.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3698 ◽  
Author(s):  
Yanbin Hou ◽  
Xiaodong Yang ◽  
Qammer Abbasi

The motivation of this work is to help outpatients find their corresponding departments or clinics, thus, it needs to provide indoor positioning services with a room-level accuracy. Unlike wireless outdoor localization that is dominated by the global positioning system (GPS), wireless indoor localization is still an open issue. Many different schemes are being developed to meet the increasing demand for indoor localization services. In this paper, we investigated the AoA-based wireless indoor localization for outpatients’ wayfinding in a hospital, where Wi-Fi access points (APs) are deployed, in line, on the ceiling. The target position can be determined by a mobile device, like a smartphone, through an efficient geometric calculation with two known APs coordinates and the angles of the incident radios. All possible positions in which the target may appear have been comprehensively investigated, and the corresponding solutions were proven to be the same. Experimental results show that localization error was less than 2.5 m, about 80% of the time, which can satisfy the outpatients’ requirements for wayfinding.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Fatima Ameen ◽  
Ziad Mohammed ◽  
Abdulrahman Siddiq

Tracking systems of moving objects provide a useful means to better control, manage and secure them. Tracking systems are used in different scales of applications such as indoors, outdoors and even used to track vehicles, ships and air planes moving over the globe. This paper presents the design and implementation of a system for tracking objects moving over a wide geographical area. The system depends on the Global Positioning System (GPS) and Global System for Mobile Communications (GSM) technologies without requiring the Internet service. The implemented system uses the freely available GPS service to determine the position of the moving objects. The tests of the implemented system in different regions and conditions show that the maximum uncertainty in the obtained positions is a circle with radius of about 16 m, which is an acceptable result for tracking the movement of objects in wide and open environments.


Drones ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 37 ◽  
Author(s):  
Rizwan ◽  
Shehzad ◽  
Awais

Air transport is the fastest way to reach areas with no direct land routes for ambulances. This paper presents the development of a quadcopter-based rapid response unit in an efficient aerial aid system to eliminate the delay time for first aid supplies. The system comprises a health monitoring and calling system for a field person working in open areas and a base station with the quadcopter. In an uncertain situation, the quadcopter is deployed from the base station towards the field person for immediate help through the specified path using constant Global System for Mobile (GSM)- and Global Positioning System (GPS)-based connections. The entire operation can be monitored at the base station with a Virtual Reality (VR) head-tracking system supported by a smartphone. The camera installed on the quadcopter is synchronized with the operator’s head movement while wearing a VR head-tracking system at the base station. Moreover, an Infrared (IR)-based obstacle-evasion model is implemented separately to explain the working of the autonomous collision-avoidance system. The system was tested, which confirmed the reduction in the response time to supply aid to the desired locations.


The number of injuries is increasing on a regular basis, as are concerns about driver and passenger safety. Countries that have minimized road traffic risk effectively have adopted a "systems approach" to road safety. The issue of road safety is centered on speed. There is a clear connection between speed and the number of accidents as well as the seriousness of the crash's consequences. This framework proposes a speed limit camera monitoring/tracking system that uses the Global Positioning System (GPS) and cloud computing with the Software-as-a-Service (SaaS) module to provide valuable information about roads in order to improve safety. It also alerts the driver about signs, breaks, and which roads it connects to in the future.


There is a clear need to enhance security action to prevent any malicious use or inadvertent abuse of radiation sources. Some of these radioactive sources are consistently transferred beyond the office or laboratory grounds for work and consulting reasons. This paper presents the early development of the radioactive citation tracking, which combined the Arduino microcontroller, Global Positioning System (GPS) and Global Mobile Communication System (GSM) systems. The monitoring scheme will assist the proprietor track the motion of irradiated sources. The system is completely capable of monitoring the motion of the toxic substance through GPS satellite signals. The GPS position could either be transferred to the headquarters at a set intervalShort Messaging Service (SMS) enables real-time surveillance or storage on a flash drive for offline surveillance and information capturing..


Author(s):  
K. O. Kadiri ◽  
O. Adekoya Adegoke

This work is a SMS (Short Message Service) based tracking system, that uses a Global Positioning System (GPS) and GSM module which is installed in a secret part of the vehicle and is in charge of tracking the vehicle and sending the location of the vehicle in terms of coordinates to the GSM (Global System for Mobile communication) module. The GSM module receives the coordinates via SMS in which the information is sent to the owner of the vehicle or the police and the vehicle’s position can be located in a map with the aid of the Google Maps application. This work implements the foundation of GPS, GSM, and all other embedded systems, with the use of their concepts to produce a vehicle tracking device that is cheaper and more effective than other tracking device in the market today.


Sign in / Sign up

Export Citation Format

Share Document