scholarly journals Energy efficiency hybrid power management of electric vehicle (EV) charging through photovoltaic (PV) and micro grid (MG)

2018 ◽  
Vol 7 (2.25) ◽  
pp. 68
Author(s):  
B Rubini ◽  
R Krishnakumar

To Analyze wireless charging system of solar PV, panel concept with electric vehicle (EV). In this developed type is a combination of solar photovoltaic (PV) and Micro grid. In this type, designed two type of operation initially the EV Charging with micro grid input supply and PV Panel. If any fault occur or grid power failure the EV battery system charge through PV panel ultimately the battery sys-tem always on line charging either grid source or PV arrays panel. The proposed methods are integrated with bidirectional converter back-to-back converter with grid source. This paper focus into the power enhancement depends upon the irradiation of solar panels, so that the conversion of electrical energy is in accordance with the needs of electric vehicle attain maximum as possible. The design type of EV wireless charging methodology analyzed using MATLAB/Simulink is to get the effective power enhancement and charging to the electric vehicle continuous on line charging system.  

2018 ◽  
Vol 7 (2.17) ◽  
pp. 70
Author(s):  
Jaiganesh K ◽  
Karuppiah N ◽  
Ravivarman S ◽  
Md Asif

The maximum electrical energy conversion efficiency of the Solar PV panel is up to 22% in normal conventional roof- top system under the temperature of 25˚C on Standard Test Condition (STC). In Indian climatic conditions, the atmospheric temperature is mostly above 35˚C to 45˚C, it incites 35˚C to 80˚C temperature on the PV panel. The black body of the PV panel absorbs more heat. This temperature affects the electrical efficiency of the panel significantly. This paper proposes the mathematical modelling of the solar PV panel for different solar irradiation and the temperature. The experimental evaluation is conducted in the latitude of 11.36 (N) and longitude 77.82 (E). The testing and monitoring was done with LabVIEW based National Instruments hardware such as NI cDAQ-9178, NI DAQ - 9227 and NI DAQ 9225. The comparative study between the simulated result and real time hardware results are discussed in this paper. The test result shows that the output of the proposed model mismatches with the experimental output of the solar PV panel due to the negative correlation between the efficiency and temperature for variable irradiation condition. It shows a power difference of 9.41W between the output of the proposed model and the experimental setup.  


2020 ◽  
Author(s):  
Shiliang Hou ◽  
Bo Yu ◽  
Wei Yan ◽  
Chongming Zhu ◽  
Ke Wang ◽  
...  

2021 ◽  
Author(s):  
Kundan Kumar ◽  
Kantipudi V. V. S. R. Chowdary ◽  
P. Sanjeevikumar ◽  
Ramjee Prasad

2019 ◽  
Vol 11 (11) ◽  
pp. 168781401988696
Author(s):  
Ahsan Elahi ◽  
Arslan Ahmed Amin ◽  
Umar Tabraiz Shami ◽  
Muhammad Tayyab Usman ◽  
Muhammad Sajid Iqbal

Wireless charging has become an emerging challenge to reduce the cost of a conventional plug-in charging system in electric vehicles especially for supercapacitors that are utilized for quick charging and low-energy demands. In this article, the design of an efficient wireless power transfer system has been presented using resonant inductive coupling technique for supercapacitor-based electric vehicle. Mathematical analysis, simulation, and experimental implementation of the proposed charging system have been carried out. Simulations of various parts of the systems are carried out in two different software, ANSYS MAXWELL and MATLAB. ANSYS MAXWELL has been used to calculate the various parameters for the transmitter and receiver coils such as self-inductance ( L), mutual inductance ( M), coupling coefficient ( K), and magnetic flux magnitude ( B). MATLAB has been utilized to calculate output power and efficiency of the proposed system using the mathematical relationships of these parameters. The experimental setup is made with supercapacitor banks, electric vehicle, wattmeters, controller, and frequency generator to verify the simulation results. The results show that the proposed technique has better power transfer efficiency of more than 75% and higher power transfer density using a smaller coil size with a bigger gap of 4–24 cm.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Xingwen Zhao ◽  
Jiaping Lin ◽  
Hui Li

Recently, scientists in South Korea developed on-line electric vehicle (OLEV), which is a kind of electric vehicle that can be charged wirelessly while it is moving on the road. The battery in the vehicle can absorb electric energy from the power transmitters buried under the road without any contact with them. Several billing schemes have been presented to offer privacy-preserving billing for OLEV owners. However, they did not consider the existence of free-riders. When some vehicles are being charged after showing the tokens, vehicles that are running ahead or behind can switch on their systems and drive closely for a free charging. We describe a billing scheme against free-riders by using several cryptographic tools. Each vehicle should authenticate with a compensation-prepaid token before it can drive on the wireless-charging-enabled road. The service provider can obtain compensation if it can prove that certain vehicle is a free-rider. Our scheme is privacy-preserving so the charging will not disclose the locations and routine routes of each vehicle. In fact, our scheme is a fast authentication scheme that anonymously authenticates each user on accessing a sequence of services. Thus, it can be applied to sequential data delivering services in future 5G systems.


Sign in / Sign up

Export Citation Format

Share Document