scholarly journals Oscillation of Second-Order Quasilinear Generalized Difference Equations

2018 ◽  
Vol 7 (4.10) ◽  
pp. 1050
Author(s):  
V. Srimanju ◽  
Sk. Khadar Babu ◽  
V. Chandrasekar

Authors present sufficient conditions for the oscillation solutions of the generalized perturbed quasilinear difference equation where , . Examples are illustrates the importance of our results are also included.  

Author(s):  
Chittaranjan Behera ◽  
Radhanath Rath ◽  
Prayag Prasad Mishra

This article, is concerned with finding sufficient conditions for the oscillation and non oscillation of the solutions of a second order neutral difference equation with multiple delays under the forward difference operator, which generalize and extend some existing results.This could be possible by extending an important lemma from the literature.


2003 ◽  
Vol 34 (2) ◽  
pp. 137-146 ◽  
Author(s):  
E. Thandapani ◽  
K. Mahalingam

Consider the second order difference equation of the form$\Delta^2(y\n-py_{n-1-k})+q_nf(y_{n-\ell})=0,\quad n=1,2,3,\ldots  \hskip 1.9cm\hbox{(E)}$where $ \{q_n\}$ is a nonnegative real sequence, $ f:{\Bbb R}\rightarrow {\Bbb R}$ is continuous such that $ uf(u)>0$ for $ u\not= 0$, $ 0\le p


2007 ◽  
Vol 38 (4) ◽  
pp. 323-333 ◽  
Author(s):  
E. Thandapani ◽  
P. Mohan Kumar

In this paper, the authors establish some sufficient conditions for oscillation and nonoscillation of the second order nonlinear neutral delay difference equation$$ \Delta^2 (x_n-p_nx_{n-k}) + q_nf(x_{n-\ell}) = 0, ~~n \ge n_0 $$where $ \{p_n\} $ and $ \{q_n\} $ are non-negative sequences with $ 0$


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Feng Xiong ◽  
Zhan Zhou

AbstractThis paper derives several sufficient conditions for the existence of three solutions to the Dirichlet problem for a second-order self-adjoint difference equation involving p-Laplacian through the critical point theory. Furthermore, by using the strong maximum principle, we prove that the three solutions are positive under appropriate assumptions on the nonlinearity. Finally, we present three examples to confirm our results.


2019 ◽  
Vol 39 (1) ◽  
pp. 61-75
Author(s):  
Małgorzata Migda ◽  
Janusz Migda ◽  
Małgorzata Zdanowicz

A second-order nonlinear neutral difference equation with a quasi-difference is studied. Sufficient conditions are established under which for every real constant there exists a solution of the considered equation convergent to this constant.


Author(s):  
Robert Stegliński

AbstractIn this work, we establish optimal Lyapunov-type inequalities for the second-order difference equation with p-Laplacian $$\begin{aligned} \Delta (\left| \Delta u(k-1)\right| ^{p-2}\Delta u(k-1))+a(k)\left| u(k)\right| ^{p-2}u(k)=0 \end{aligned}$$ Δ ( Δ u ( k - 1 ) p - 2 Δ u ( k - 1 ) ) + a ( k ) u ( k ) p - 2 u ( k ) = 0 with Dirichlet, Neumann, mixed, periodic and anti-periodic boundary conditions.


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
E. J. Janowski ◽  
M. R. S. Kulenović

Consider the difference equationxn+1=f(xn,…,xn−k),n=0,1,…,wherek∈{1,2,…}and the initial conditions are real numbers. We investigate the existence and nonexistence of the minimal period-two solution of this equation when it can be rewritten as the nonautonomous linear equationxn+l=∑i=1−lkgixn−i,n=0,1,…,wherel,k∈{1,2,…}and the functionsgi:ℝk+l→ℝ. We give some necessary and sufficient conditions for the equation to have a minimal period-two solution whenl=1.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Kirill M. Chudinov

Abstract We consider explicit sufficient conditions for all solutions of a first-order linear difference equation with several variable delays and non-negative coefficients to be oscillatory. The conditions have the form of inequalities bounding below the upper and lower limits of the sums of coefficients over a subset of the discrete semiaxis. Our main results are oscillation tests based on a new principle for composing the estimated sums of coefficients. We also give some results in the form of examples, including a counterexample to a wrong oscillation test cited in several recent papers.


In this paper, the authors obtained some new sufficient conditions for the oscillation of all solutions of the fourth order nonlinear difference equation of the form ( ) ( 1 ) 0 3  anxn  pnxn  qn f xn  n = 0,1,2, … ., where an, pn, qn positive sequences. The established results extend, unify and improve some of the results reported in the literature. Examples are provided to illustrate the main result.


2015 ◽  
Vol 46 (4) ◽  
pp. 441-451 ◽  
Author(s):  
Ethiraju Thandapani ◽  
Devarajulu Seghar ◽  
Sandra Pinelas

In this paper we obtain some new oscillation criteria for the neutral difference equation \begin{equation*} \Delta \Big(a_n (\Delta (x_n-p_n x_{n-k}))\Big)+q_n f(x_{n-l})=0 \end{equation*} where $0\leq p_n\leq p0$ and $l$ and $k$ are positive integers. Examples are presented to illustrate the main results. The results obtained in this paper improve and complement to the existing results.


Sign in / Sign up

Export Citation Format

Share Document