scholarly journals Bio-equivalence study of two oral doxycycline formulations (doxycycline kela 75%® and mebcodox 75%®) in broiler Chickens

2020 ◽  
Vol 8 (1) ◽  
pp. 54
Author(s):  
Ashraf El-Komy ◽  
Mohamed Aboubakr

The present study was designed to assess the comparative bio-equivalence of Doxycycline Kela 75%® and Mebcodox 75%® in healthy broiler chickens after oral administration of both products in a dose of 20 mg doxycycline base/kg.b.wt. Twenty four broiler chickens were divided into two groups. The first group was designed to study the pharmacokinetics of Doxycycline Kela 75%®, while the 2nd group was designed to study the pharmacokinetics of Mebcodox 75%®. Each broiler chickens in both groups were orally administered with 20 mg doxycycline base/kg.b.wt. Blood samples were obtained from the wing vein and collected immediately before and at 0.08, 0.16, 0.25, 0.5, 1, 2, 4, 6, 8, 12 and 24 hours after a single oral administration The disposition kinetics of Doxycycline Kela 75%® and Mebcodox 75%® following oral administration of 20 mg doxycycline base/kg.b.wt. revealed that the maximum blood concentration [Cmax] were 3.35 and 3.28 μg/ml and attained at [tmax] of 0.97 and 0.99 hours, respectively.In conclusion: Mebcodox 75%® is bioequivalent to Doxycycline Kela 75%® since the ratios of Cmax, AUC0-24 and AUC0-∞ (T/R) was 0.97, 0.95 and 0.94 respectively. These are within the bioequivalence acceptance range. Mebcodox 75%® and Doxycycline Kela 75%® are therefore bioequivalent and interchangeable.   

Author(s):  
Ashraf Elkomy ◽  
Mohamed Aboubakr

Background: The present study was designed to assess the comparative bio-equivalence of Micotil 300® and Cozina 300® in healthy broiler chickens after oral administration of both products in a dose of 15 mg tilmicosin base/kg body wt.Methods: Twenty four broiler chickens were divided equally into two groups (12 chickens for each group). The first group was designed to study the pharmacokinetics of Micotil 300®, while the 2nd group was designed to study the pharmacokinetics of Cozina 300®. Each broiler chicken in both groups was orally administered with 15 mg tilmicosin/kg body wt. Blood samples were obtained from the wing vein and collected immediately before and at 0.08, 0.16, 0.25, 0.5, 1, 2, 4, 6, 8, 12 and 24 hours after a single oral administration.Results: The disposition kinetics of Micotil 300® and Cozina 300® following oral administration of 15 mg tilmicosin/kg body wt revealed that the maximum blood concentration [Cmax] were 1.73 and 1.67 μg/ml and attained at [tmax] of 2.01 and 2.04 hours, respectively.Conclusions: Cozina 300® is bioequivalent to Micotil 300® since the ratios of Cmax, AUC0-24 andAUC0-∞ (T/R) were 0.96, 0.93 and 0.91 respectively. These are within the bio-equivalence acceptance range. Micotil 300® and Cozina 300® are therefore bioequivalent and interchangeable.


2020 ◽  
Vol 8 (1) ◽  
pp. 60
Author(s):  
Ashraf Elkomy ◽  
Mohamed Aboubakr

The present study was designed to assess the comparative bio-equivalence of Lincopharm 800® and Lincoyosr® in healthy broiler chicken after oral administration of both products in a dose of 20 mg lincomycin base/kg b.wt. Twenty four broiler chickens were divided into two groups. The first group was designed to study the pharmacokinetics of Lincopharm 800®, while the 2nd group was designed to study the pharmacokinetics of Lincoyosr®. Each broiler chicken in both groups was orally administered with 20 mg lincomycin base/kg b.wt. Blood samples were obtained from the wing vein and collected immediately before and at 0.08, 0.16, 0.25, 0.5, 1, 2, 4, 8, 12 and 24 hours after a single oral administration. The disposition kinetics of Lincopharm 800® and Lincoyosr® following oral administration of 20 mg lincomycin base /kg b.wt, revealed that the maximum blood concentration of lincomycin [Cmax] were 4.81 and 4.62 μg/ml and attained at [tmax] of 1.36 and 1.35 hours, respectively. In conclusion: Lincoyosr® is bioequivalent to Lincopharm 800® since the ratios of Cmax, AUC0-24 and AUC0-∞ (T/R) was 0.96, 0.92 and 0.91 respectively. These are within the bioequivalence acceptance range. Lincoyosr® and Lincopharm 800® are therefore bioequivalent and interchangeable.   


Author(s):  
Mohamed Aboubakr ◽  
Mohamed Elbadawy

Background: The present study was designed to assess the comparative bioequivalence of Biocillin® and Atcomox87%® in healthy broiler chickens after oral administration of both products in a dose of 20 mg amoxicillin base/kg.b.wt.Methods: Twenty-four broiler chickens were divided into two groups. The first group was designed to study the pharmacokinetics of Biocillin®, while the 2nd group was designed to study the pharmacokinetics of Atcomox87%®. Each broiler chicken in both groups was injected intravenously with 20 mg amoxicillin pure standard/kg.b.wt. After 15 days both groups taken orally Biocillin® and Atcomox87%®, respectively. Blood samples were obtained from the wing vein and collected immediately before and at 0.08, 0.16, 0.25, 0.5, 1, 2, 4, 8, 12 and 24 hours after a single intravenous or oral administration.Results: Amoxicillin in both products obeyed a two compartments open model following I.V. injection. The disposition kinetics of Biocillin® and Atcomox87%® following oral administration of 20 mg amoxicillin base/kg.b.wt. revealed that the maximum blood concentration [Cmax] were 10.79 and 10.30 μg/ml and attained at [tmax] of 0.90 and 0.86 hours, respectively. The mean systemic bioavailability of amoxicillin in Biocillin® and Atcomox 87%® after oral administration in healthy chickens was 64.15 and 65.54%, respectively.Conclusions: Atcomox 87%® is bioequivalent to Biocillin® since the ratios of Cmax, AUC0-24 and AUC0-∞ (T/R) were 0.95, 0.91 and 0.90 respectively. These are within the bioequivalence acceptance range. Biocillin® and Atcomox87%® are therefore bioequivalent and interchangeable.


Author(s):  
Taha Attia ◽  
Amera Abd El Latif ◽  
Saber El-Hanbally ◽  
Hanem El-Gendy

Background: Several studies assayed the pharmacokinetics of tilmicosin in broilers at a dosage of (25mg/kg.b.wt.). The aim of this study was to investigate the pharmacokinetics and tissue residues of tilmicosin following single and repeated oral administrations (25mg/kg.b.wt.) once daily for 5 consecutive days in healthy and experimentally Mycoplasma gallisepticum and E. coli infected broilers.Methods: After oral administrations of tilmicosin (25 mg/kg.b.wt.) one ml blood was collected from the right wing vein and tissues samples for determination of tilmicosin concentrations and the disposition kinetics of it by the microbiological assay method using Bacillus subtilis (ATCC 6633) as a test organism.Results: In this study, the plasma concentration time graph was characteristic of a two-compartments open model. Following a single oral administration, tilmicosin was rapidly absorbed in both healthy and experimentally infected broilers with an absorption half-life of (t0.5(ab)) 0.45 and 0.52h, maximum serum concentration (Cmax) was 1.06 and 0.69μg/ml at (tmax) about 2.56 and 2.81h, (t0.5(el)) was 21.86 and 22.91h and (MRT) was 32.15 and 33.71h, respectively; indicating the slow elimination of tilmicosin in chickens. The in-vitro protein binding was 9.72±0.83%. Serum concentrations of tilmicosin following repeated oral administration once daily for five consecutive days, almost peaked 2h after each dose with lower significant values recorded in experimentally infected broiler chickens than in healthy ones.Conclusions: This study showed that tilmicosin was cleared rapidly from tissues. The highest residue values were recorded in the lung followed by liver and kidneys while the lowest values were recorded in spleen, fat and thigh muscles. Five days for withdrawal period of tilmicosin suggested in broilers.


Author(s):  
K Putecova ◽  
K Nedbalcova ◽  
I Bartejsova ◽  
M Zouharova ◽  
K Matiaskova ◽  
...  

A rapid, simple and highly efficient analytical method for the targeted determination of trimethoprim and sulfamethoxazole in serum samples has been developed and used to measure the pharmacokinetic curve of these medicinal substances after administration to chicken broilers. The pharmacokinetics properties of trimethoprim and sulfamethoxazole were investigated in clinically healthy broiler chickens after the single oral administration of the commercial preparation Methoxasol (Eurovet Animal Health, B.V., The Netherlands) at a dose of 0.275 ml/kg b.w. After a single dose drug administration, the chickens were sacrificed by decapitation under general anaesthesia by Isoflurin 1 000 mg/g (Vetpharma AH, Spain) and the blood was collected at precisely defined intervals: 15, 30, 45, 60, 90, 120, 180, 360 and 720 min after the administration. The serum concentrations of amoxicillin were determined using Q Exactive tandem mass spectrometer (Thermo Fisher Scientific, USA) in conjunction with liquid chromatography. The detected pharmacokinetic parameters of trimethoprim after the oral administration were C<sub>max</sub> = 2.1 ± 1.0 µg/ml; T<sub>max</sub> = 1.5 h; t<sub>½</sub> = 0.88 h; k<sub>el</sub> = 0.009 3 ± 0.001 1 1/h; AUC<sub>t</sub> = 2.901 ± 1.4 µg.h/ml; AUC<sub>∞</sub> = 2.907 ± 1.5 µg.h/ml; V<sub>d</sub> = 2.632 l/kg; Cl = 2.7 l/h. The pharmacokinetic parameters of sulfamethoxazole after the oral administration were C<sub>max</sub> = 47.1 ± 15.3 µg/ml; T<sub>max</sub> = 1 h; t<sub>½</sub> = 1.92 h; k<sub>el</sub> = 0.004 6 ± 0.000 3 1/h; AUC<sub>t</sub> = 89.676 ± 26.9 µg.h/ml; AUC<sub>∞</sub> = 94.612 ± 28.4 µg.h/ml; V<sub>d</sub> = 0.584 l/kg; Cl = 0.21 l/h. To the best of our knowledge, this is the first pharmacokinetic study of the combination of sulfamethoxazole and trimethoprim in broiler chickens.


Author(s):  
H.B. Patel ◽  
U.D. Patel ◽  
C.M. Modi ◽  
V.C. Ladumor ◽  
C.N. Makwana ◽  
...  

Background: Various antibacterial drugs are substrates for drug metabolizing enzymes. They suffer from reduced bioavailability after oral administration in chickens. Herbal bio-enhancers increased the absorption of co-administered drugs. Hence, present study was planned to explore the bio-enhancing effect of piperine and quercetin pretreatment on pharmacokinetics of marbofloxacin after oral administration in broiler chickens.Methods: The pharmacokinetics of marbofloxacin was investigated following single dose (5 mg/kg) oral administration in piperine, quercetin alone and both in combination pretreated (10 mg/kg each, oral, 3 days) broiler chickens. The concentrations of marbofloxacin in plasma samples were analyzed by high performance liquid chromatography.Result: Following single oral administration of marbofloxacin, elimination half-lives (t1/2β) were 6.23 ± 1.01, 5.69 ± 0.39 and 7.71 ± 0.59 h in piperine, quercetin and both in combination pretreated chickens, respectively. The elimination half-life (t1/2β), apparent volume of distribution (Vd(area)/F) and mean residence time (MRT) were significantly (p less than 0.05) higher in combination pretreated chickens as compared to piperine and quercetin alone groups. Piperine and quercetin combined pretreatment has improved the pharmacokinetics profile of marbofloxacin after oral administration in broiler chickens. Findings of the study are expedient for the development of protocol for use of bio-enhancers with antibiotics in broiler chickens.


Sign in / Sign up

Export Citation Format

Share Document