scholarly journals Epoxy-glass Microballoon Syntactic Foams for Blast Mitigating Applications

2018 ◽  
Vol 68 (2) ◽  
pp. 210 ◽  
Author(s):  
A.V. Ullas ◽  
P. K. Sharma ◽  
P. Chandel ◽  
P. Sharma ◽  
D. Kumar ◽  
...  

Polymeric syntactic foams refer to a class of cellular material created using preformed hollow spheres bound together with a polymeric matrix. These cellular materials possess exceptional ability to respond against high impact dynamic loads. This paper is an attempt to fabricate polymeric syntactic foams of epoxy containing hollow glass microballoon at varying loading (40 % - 60 %) and explore their potential towards blast mitigation. The tensile, compressive and flexural strength were found to be inversely proportional to the microballoon loading in the quasi-static regime. The strain rate sensitivity of the foams was confirmed by performing high strain rate studies using split hopkinson pressure bar. The flow stress of these foams was found to increase with increasing strain rates. The syntactic foams were subjected to controlled transient blast loadings using a shock tube. The samples remained intact and no strain was observed on the strain gauge, even under a blast load of ~ 90 psi, which clearly highlight their potential as core materials for blast mitigating applications.

2018 ◽  
Vol 183 ◽  
pp. 04005 ◽  
Author(s):  
Bar Nurel ◽  
Moshe Nahmany ◽  
Adin Stern ◽  
Nahum Frage ◽  
Oren Sadot

Additive manufacturing by Selective Laser Melting of metals is attracting substantial attention, due to its advantages, such as short-time production of customized structures. This technique is useful for building complex components using a metallic pre-alloyed powder. One of the most used materials in AMSLM is AlSi10Mg powder. Additively manufactured AlSi10Mg may be used as a structural material and it static mechanical properties were widely investigated. Properties in the strain rates of 5×102–1.6×103 s-1 and at higher strain rates of 5×103 –105 s-1 have been also reported. The aim of this study is investigation of dynamic properties in the 7×102–8×103 s-1 strain rate range, using the split Hopkinson pressure bar technique. It was found that the dynamic properties at strain-rates of 1×103–3×103 s-1 depend on a build direction and affected by heat treatment. At higher and lower strain-rates the effect of build direction is limited. The anisotropic nature of the material was determined by the ellipticity of samples after the SHPB test. No strain rate sensitivity was observed.


2014 ◽  
Vol 803 ◽  
pp. 343-347
Author(s):  
M.F. Omar ◽  
Nur Suhaili Abd Wahab ◽  
Hazizan Md Akil ◽  
Zainal Arifin Ahmad ◽  
Mohd Fadli Ahmad Rasyid ◽  
...  

Surface modification is one of the treatment methods that can be implemented to improve the strain rate sensitivity of composite materials. In this study, both untreated and treated polypropylene/muscovite layered silicate composites were tested under static and dynamic loading up to 1100 s-1 using the universal testing machine and the split Hopkinson pressure bar apparatus, respectively. Muscovite particles were treated with lithium nitrate and cetyltrimethylammonium bromide as a surfactant through ion exchange treatment. Results show that the treated polypropylene/muscovite specimens with fine state of dispersion level shows better rate of sensitivity as compared to untreated polypropylene/muscovite specimens under a wide range of strain rate investigated. Apart from that, the rate of sensitivity of both tested polypropylene/muscovite layered silicate composites also show great dependency on the strain rate sensitivity was steadily increased with increasing strain rate. Unfortunately, the thermal activation values show contrary trend. Key words: Ion exchange treatment; Strain rate sensitivity; Muscovite particles; Split Hopkinson pressure bar apparatus; Strain rates


Studies of the properties of materials at high strain rates by the split Hopkinson pressure bar suggest that most materials show a sharp increase in strain rate sensitivity at high rates. In this paper, analytical and numerical evidence is presented which shows that his apparent increase in the strain rate sensitivity reported in the literature may result from stress wave propagation effects present in the test. A one-dimensional analytical solution has been developed for a rate independent bi-linear material tested in a split Hopkinson pressure bar apparatus. The solution, which is based on a stress wave reverberation model, shows that there is an apparent increase in the strain rate sensitivity of the material which can only be explained in terms of large propagating plastic wave fronts in the specimen. Numerical modelling of the same test geometry for the same input material model is in excellent agreement showing conclusively that stress wave propagation effects are inevitable at high impact velocities. The assumption of uniform stress and strain distribution within a split Hopkinson pressure bar specimen is therefore incorrect at high impact velocities. The formulation of the novel numerical code used in the present work, which is based on the finite volume technique, is also presented.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 9444-9461
Author(s):  
Damian Stoddard ◽  
Suman Babu Ukyam ◽  
Brent Tisserat ◽  
Ivy Turner ◽  
Rowan Baird ◽  
...  

Novel bio-based composite wood panels (CWPs) that consisted of distiller’s dried grains and solubles (DDGS) flour adhesive bound to a wood filler/reinforcement were subjected to high strain-rate compression loading, and their behavior was investigated. Specimens of DDGS-Paulownia wood (PW) or DDGS-pinewood (Pine) composites made using DDGS with fractions of 10%, 15%, 25%, and 50% were tested at high strain-rates using a modified compression Split Hopkinson Pressure Bar (SHPB). Both DDGS-PW and DDGS-Pine composites displayed strain-rate sensitivity, and DDGS-PW had a 25% fraction, which showed the highest ultimate compressive strength of 655 MPa at approximately 1600/s. The 90%-PW had the highest specific energy of 19.24 kJ/kg at approximately 1600/s when loaded via dynamic compression. The CWPs constructed of DDGS-PW had higher strength and energy absorption than DDGS-Pine with the exception of the 50% DDGS composites.


2015 ◽  
Vol 816 ◽  
pp. 795-803
Author(s):  
Yan Ling Wang ◽  
Song Xiao Hui ◽  
Wen Jun Ye ◽  
Rui Liu

The mechanical properties and fracture failure behavior of the near β-type Ti-5Al-5Mo-5V-3Cr-X (X = 1Fe or 1Zr) titanium alloys were studied by Split Hopkinson Pressure Bar (SHPB) experiment under the dynamic loading conditions at a strain rate of 1.5 × 103 s-1–5.0 × 103 s-1. Results showed that the SHPB specimen fractured in the direction of maximum shearing stress at an angle of 45° with the compression axis. The fracture surface revealed the shear and tension zones with cleavage steps and parabolic dimples. Severe early unloading was observed on the Ti-5553 alloy under a strain rate of 4,900 s-1 loading condition, and the dynamic property of the Ti-55531Zr alloy was proved to be the optimal.


2021 ◽  
Vol 1035 ◽  
pp. 591-595
Author(s):  
Dan Guo ◽  
Jian Ming Liu ◽  
De Ming Zhang ◽  
Xin Zhang ◽  
Tong Liu

The purpose of this investigation is to study the dynamic hardness of MCrAlY abradable coatings under different strain rates. A dynamic indentation device based on the split Hopkinson pressure bar system (SHPB) was used. The results show that the hardness of MCrAlY coating increased with the increase of the strain rate, which has a positive strain rate effect. In addition, the difference of the static hardness of MCrAlY coating prepared by HVOF and LPPS was only 4%, while the difference in dynamic hardness was 16%.


Sign in / Sign up

Export Citation Format

Share Document