Effect of Heat Generation/Absorption on Heat and Mass Transfer in A Micropolar Fluid Over A Stretching Sheet with Newtonian Heating and Chemical Reaction

Author(s):  
M.Sreedhar Babu ◽  
◽  
M Lavanya ◽  
G.Venkata Ramanaiah
2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Khilap Singh ◽  
Manoj Kumar

The effects of chemical reaction on heat and mass transfer flow of a micropolar fluid in a permeable channel with heat generation and thermal radiation is studied. The Rosseland approximations are used to describe the radiative heat flux in the energy equation. The model contains nonlinear coupled partial differential equations which have been transformed into ordinary differential equation by using the similarity variables. The relevant nonlinear equations have been solved by Runge-Kutta-Fehlberg fourth fifth-order method with shooting technique. The physical significance of interesting parameters on the flow and heat transfer characteristics as well as the local skin friction coefficient, wall couple stress, and the heat transfer rate are thoroughly examined.


2013 ◽  
Vol 61 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Ishrat Zahan ◽  
MA Samad

In the present study, an analysis is carried out to investigate the effect of chemical reaction and radiation on a steady two-dimensional magneto-hydrodynamics (MHD) heat and mass transfer free convection flow of a viscous incompressible fluid along a stretching sheet with heat generation along with the effect of viscous dissipation. The basic non-linear partial differential equations governing the flow field are reduced to a system of coupled non-linear ordinary differential equations by similarity transformations and the equations are solved numerically by applying Nachtsheim-Swigert shooting iteration technique along with sixth order Runge-Kutta integration scheme. The numerical results with respect to embedded parameters are displayed graphically for the non-dimensional velocity, temperature and concentration profiles. Finally the effects of the pertinent parameters which are of physical and engineering interest are presented in tabular form. Dhaka Univ. J. Sci. 61(1): 27-34, 2013 (January) DOI: http://dx.doi.org/10.3329/dujs.v61i1.15092


Sign in / Sign up

Export Citation Format

Share Document