Soret Effect on Free Convective Heat and Mass Transfer through a Porous Medium in a Vertical Channel

Author(s):  
M.Sree vani ◽  
2009 ◽  
Vol 36 (6) ◽  
pp. 524-537 ◽  
Author(s):  
P. A. Lakshmi Narayana ◽  
P. V. S. N. Murthy ◽  
P. V. S. S. S. R. Krishna ◽  
Adrian Postelnicu

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Ime Jimmy Uwanta ◽  
Halima Usman

The present paper investigates the combined effects of Soret and Dufour on free convective heat and mass transfer on the unsteady one-dimensional boundary layer flow over a vertical channel in the presence of viscous dissipation and constant suction. The governing partial differential equations are solved numerically using the implicit Crank-Nicolson method. The velocity, temperature, and concentration distributions are discussed numerically and presented through graphs. Numerical values of the skin-friction coefficient, Nusselt number, and Sherwood number at the plate are discussed numerically for various values of physical parameters and are presented through tables. It has been observed that the velocity and temperature increase with the increase in the viscous dissipation parameter and Dufour number, while an increase in Soret number causes a reduction in temperature and a rise in the velocity and concentration.


2012 ◽  
Vol 134 (4) ◽  
Author(s):  
R. R. Kairi ◽  
P. V. S. N. Murthy

In this paper, we investigate the influence of melting on mixed convection heat and mass transfer from vertical flat plate in a non-Newtonian fluid-saturated non-Darcy porous medium including the prominent Soret effect. The wall and the ambient medium are maintained at constant but different levels of temperature and concentration such that the heat and mass transfer occurs from the wall to the medium. The Ostwald–de Waele power law model is used to characterize the non-Newtonian fluid behavior. A similarity solution for the transformed governing equations is obtained. The numerical computation is carried out for various values of the nondimensional physical parameters. The variation of temperature, concentration, and heat and mass transfer coefficients with the power law index, mixed convection parameter, inertia parameter, melting parameter, Soret number, buoyancy ratio, and Lewis number is discussed for a wide range of values of these parameters.


Sign in / Sign up

Export Citation Format

Share Document