Direct Growth of Vertically-Aligned Single-Walled Carbon Nanotubes on Conducting Substrates using Ethanol for Electrochemical Capacitor

2011 ◽  
Vol 14 (3) ◽  
pp. 173-178 ◽  
Author(s):  
Mohd Asyadi Azam ◽  
Akihiko Fujiwara ◽  
Tatsuya Shimoda

A massive growth of vertically-aligned single-walled carbon nanotubes (VA-SWCNTs) from aluminum oxide (Al-O)-supported Co catalyst and high purity ethanol was performed using alcohol catalytic chemical vapor deposition (ACCVD) technique. SWCNTs with 50-μm thickness were grown on the substrates via this technique. The Al metal layer of 20 nm thickness was thermally-oxidized for the production of Al-O, and 0.5 nm cobalt (Co) thin films was used as catalyst for the CVD process. The CNT growth was optimized using SiO2/Si substrates, and similar experimental condition was applied to the conducting substrates. The as-grown CNTs were characterized using Raman spectroscopy and electron microscopies for growth confirmation and for quality level investigation. Development of the catalyst nanoparticles and Al-O support layer was observed using atomic force microscopy (AFM) and transmission electron microscopy (TEM). The electrodes were fabricated using directly-grown VA-SWCNTs on SUS 310S, and were successfully used as an electrochemical capacitor. Electrochemical analysis using KOH aqueous electrolyte was performed by cyclic voltammetric (CV) and galvanostatic chargedischarge measurements; a maximum 52 Fg-1 specific gravimetric capacitance was obtained from the VA-SWCNT electrodes.

Author(s):  
Hatem Abuhimd ◽  
Abe Zeid ◽  
Yung Joon Jung ◽  
Sagar Kamarthi

Carbon nanotubes (CNTs) have received much attention from both the scientific and industrial communities due to their structural properties and unique morphology. There has also been growing interest in vertically aligned single walled carbon nanotubes (VA-SWNTs) because of their suitability for building devices such as solar cells and nanomembrane. Various methods including chemical vapor deposition (CVD) have been developed for growing VA-SWNTs. Among them is alcohol catalytic CVD which is well known for its economic viability, comprehensive substrates selectivity and good yield of VA-SWNTs. This work studies the length assurance of VA-SWNTs growth by an experimental design and an artificial neural network (ANN) metamodel. Process analysis shows that the interaction between gas flow rate and growth time are the most significant input factors. In addition, with high probability flow rate less than 150 sccm and a growth time of 20 minutes are suitable for the repeatability of medium length VA-SWNTs.


Author(s):  
Hatem Abuhimd ◽  
Abe Zeid ◽  
Yung Joon Jung ◽  
Sagar Kamarthi

Carbon nanotubes (CNTs) have received much attention from both the scientific and industrial communities due to their structural properties and unique morphology. There has also been growing interest in vertically aligned single walled carbon nanotubes (VA-SWNTs) because of their suitability for building devices such as hydrogen storage and super capacitors. Various methods including chemical vapor deposition (CVD) have been developed for growing VA-SWNTs. Among them is alcohol catalytic CVD which is well known for its economic viability, comprehensive substrates selectivity and good yield of VA-SWNTs. In order to fully understand the growth mechanism of those CNTs, an examination of the role of inputs like hydrocarbon flow rate, reaction time, chamber temperature, and pressure is essential. This work studies the controllability of VA-SWNTs growth by a hybrid process model of an experimental design and an artificial neural network (ANN). Process analysis shows that CVD pressure and temperature are the most significant input factors. In addition, interactions and response surface plots confirm these results and add that higher temperature and pressure will yield VA-SWNTs with high probability.


Sign in / Sign up

Export Citation Format

Share Document