SCRAP TIRE RUBBER-BASED AGGREGATE IN LIGHTWEIGHT CONCRETE

Author(s):  
Martina Záleská ◽  
David Čítek ◽  
Milena Pavlíková ◽  
Vojtěch Bazgier ◽  
Zbyšek Pavlík

Reusing rubber particles from used tires is good for the environment and, moreover, the world's population is becoming progressively conscious that a very high demand for natural resources is unsustainable. As the concrete industry consumes high amounts of natural resources, both for clinkering and gravel aggregate production, one must focus on its sustainability, considering environmental and economic issues. Therefore, reuse of waste tire rubber in concrete or in other composite materials is a logical solution for sustainable production of construction materials. Hence, the paper is aimed at the development and testing of lightweight concrete composed of a high volume of crushed waste tire rubber used as partial replacement of natural silica aggregate. In order to access the effect of incorporation waste tire rubber-based aggregate in concrete composition, reference concrete mix based on silica aggregate only is studied as well. The crushed waste tire rubber is characterized by its powder density, specific density, and particle size distribution. Specific attention is paid to thermal transport and storage properties of waste rubber that are examined in dependence on compaction time. For the developed lightweight concrete, mechanical, hygric, and thermal properties are tested. The tested lightweight concrete is found to be alternative and environmentally friendly construction material possessing improved thermal insulation function, interesting hygric parameters and sufficient mechanical resistance.

2017 ◽  
Vol 3 (2) ◽  
pp. 105-110
Author(s):  
Mohammad Ebrahim Komaki ◽  
Amirreza Ghodrati Dolatshamloo ◽  
Mahdi Eslami ◽  
Sahar Heydari

Disposal of waste tire rubber has become one of the major environmental issues in each part the World. One of the possible solutions to dispose of scrap tire rubber is using them into concrete curbs. This paper presents a new method to ameliorate the rubber concrete using a particular rubber size and Nano Material. Initially six mix designs were performed to determine the optimized size and percentage of rubber according to compressive strength. Afterwards, the major concrete curbs were made with the optimum mix design. Three different samples were made to determine the effects of rubber and Nano. One of which was made without rubber and Nano, the other was made with rubber and the last with rubber and Nano. Experiments were carried out to determine the durability and strength of specimens according to ISIRI-12728.


2018 ◽  
Author(s):  
Martina Záleská ◽  
David Čítek ◽  
Milena Pavlíková ◽  
Zbyšek Pavlík

2021 ◽  
Vol 15 (3) ◽  
pp. 8344-8355
Author(s):  
B. W. Chong ◽  
R. Othman ◽  
P. J. Ramadhansyah ◽  
S. I. Doh ◽  
Xiaofeng Li

With the increasing number of vehicle due to the boom of population and rapid modernisation, the management of waste tire is growing problem. Reusing grinded tire rubber in concrete is a green innovation which provide an outlet for reusing waste tire. While providing certain benefits to concrete, incorporation of tire rubber results in significant loss of concrete compressive strength which hinders the potential of rubberised concrete. This paper aims to develop mathematical models on the influence of tire rubber replacement on the compressive strength of concrete using design of experiment (DoE). 33 data sets are gathered from available literature on concrete with waste tire rubber as partial replacement of fine aggregate. Response surface methodology (RSM) model of rubberised concrete compressive strength shows great accuracy with coefficient of determination (R2) of 0.9923 and root-mean-square error (RMSE) of 2.368. Regression analysis on the strength index of rubberised concrete shows that rubberised concrete strength loss can be expressed in an exponential function of percentage of replacement. The strength loss is attributed to morphology of rubber particles and the weak bonds between rubber particles and cement paste. Hence, tire rubber replacement should be done sparingly with proper treatment and control to minimise concrete strength loss.


2016 ◽  
Vol 8 (3) ◽  
pp. 108-116 ◽  
Author(s):  
Joseph Olawale Akinyele ◽  
Ramhadhan Wanjala Salim ◽  
Williams Kehinde Kupolati

A lot of research has proposed the use of alternative materials in concrete, one of such material that has gained a lot of attention is the waste tire rubber. In this research, rubber crumb was used to partially replace fine aggregate in concrete at 0, 4, 8, 12, and 16% and represented as M0, M4, M8, M12, and M16, respectively. Sieve analysis was carried out on the rubber crumb and sand, while slump, compressive and tensile test were carried out on the concrete samples. The sieve analysis revealed that both the fine aggregate and rubber crumb are poorly graded. The slump test showed that the concrete losses it consistency as more rubber crumb was added. The 28 days compressive strength showed that there was a general reduction in strength. The work concluded that rubber crumb can be used to replace fine aggregate up to 16%, in lightweight concrete.


2002 ◽  
Vol 84 (3) ◽  
pp. 622-631 ◽  
Author(s):  
Amit K. Naskar ◽  
Anil K. Bhowmick ◽  
S. K. De

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Bo Chen ◽  
Liping Guo ◽  
Wei Sun

For improving bending toughness and fatigue performance of brittle cement-based composites, two types of water-soluble polymers (such as dispersible latex powder and polyvinyl alcohol powder) and waste tire-rubber powders are added to concrete as admixtures. Multiscale toughening mechanisms of these additions in concretes were comprehensively investigated. Four-point bending fatigue performance of four series concretes is conducted under a stress level of 0.70. The results show that the effects of dispersible latex powder on bending toughness and fatigue life of concrete are better than those of polyvinyl alcohol powder. Furthermore, the bending fatigue lives of concrete simultaneously containing polymers and waste rubber powders are larger than those of concrete with only one type of admixtures. The multiscale physics-chemical mechanisms show that high bonding effect and high elastic modulus of polymer films as well as good elastic property and crack-resistance of waste tire-rubber powders are beneficial for improving bending toughness and fatigue life of cementitious composites.


2018 ◽  
Vol 6 (3) ◽  
pp. 035703 ◽  
Author(s):  
Tej Singh ◽  
Mukesh Kumar Rathi ◽  
Amar Patnaik ◽  
Ranchan Chauhan ◽  
Sharafat Ali ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document