scholarly journals Mathematical modelling of concrete compressive strength with waste tire rubber as fine aggregate

2021 ◽  
Vol 15 (3) ◽  
pp. 8344-8355
Author(s):  
B. W. Chong ◽  
R. Othman ◽  
P. J. Ramadhansyah ◽  
S. I. Doh ◽  
Xiaofeng Li

With the increasing number of vehicle due to the boom of population and rapid modernisation, the management of waste tire is growing problem. Reusing grinded tire rubber in concrete is a green innovation which provide an outlet for reusing waste tire. While providing certain benefits to concrete, incorporation of tire rubber results in significant loss of concrete compressive strength which hinders the potential of rubberised concrete. This paper aims to develop mathematical models on the influence of tire rubber replacement on the compressive strength of concrete using design of experiment (DoE). 33 data sets are gathered from available literature on concrete with waste tire rubber as partial replacement of fine aggregate. Response surface methodology (RSM) model of rubberised concrete compressive strength shows great accuracy with coefficient of determination (R2) of 0.9923 and root-mean-square error (RMSE) of 2.368. Regression analysis on the strength index of rubberised concrete shows that rubberised concrete strength loss can be expressed in an exponential function of percentage of replacement. The strength loss is attributed to morphology of rubber particles and the weak bonds between rubber particles and cement paste. Hence, tire rubber replacement should be done sparingly with proper treatment and control to minimise concrete strength loss.

2016 ◽  
Vol 8 (3) ◽  
pp. 108-116 ◽  
Author(s):  
Joseph Olawale Akinyele ◽  
Ramhadhan Wanjala Salim ◽  
Williams Kehinde Kupolati

A lot of research has proposed the use of alternative materials in concrete, one of such material that has gained a lot of attention is the waste tire rubber. In this research, rubber crumb was used to partially replace fine aggregate in concrete at 0, 4, 8, 12, and 16% and represented as M0, M4, M8, M12, and M16, respectively. Sieve analysis was carried out on the rubber crumb and sand, while slump, compressive and tensile test were carried out on the concrete samples. The sieve analysis revealed that both the fine aggregate and rubber crumb are poorly graded. The slump test showed that the concrete losses it consistency as more rubber crumb was added. The 28 days compressive strength showed that there was a general reduction in strength. The work concluded that rubber crumb can be used to replace fine aggregate up to 16%, in lightweight concrete.


2019 ◽  
Vol 12 (4) ◽  
pp. 790-811
Author(s):  
A. PCZIECZEK ◽  
C. EFFTING ◽  
I. R. GOMES ◽  
A. SCHACKOW ◽  
E. HENNING

Abstract This article aims to perform statistical analysis on the inclusion effects of waste tire rubber and fly ash from thermoelectric plants as mortar components for coating buildings. Reference mortars and mortars containing 5% and 10% rubber with a maximum grain size of 0.71 mm and mortars containing fly ash particles with a diameter of 45 μm were produced. Mortars containing rubber replaced 5% and 10% of the fine aggregate mass by this material and fly ash was added in 10% and 20% proportions compared to the cement volume. A 3² factorial experiment was performed on the mechanical properties of the compressive strength of mortars, applying analysis of variance (ANOVA) and surface response. The rubber waste material contributed to the decrease in compressive strength of the mortar and that factor displayed the highest significance in the response variable.


2021 ◽  
Vol 6 (2) ◽  
pp. 96-103
Author(s):  
Ranno Marlany Rachman ◽  
Try Sugiyarto Soeparyanto ◽  
Edward Ngii

This research aimed to utilize Anadara Granosa (Blood clam shell) clamshell waste as a new innovation in concrete technology and to investigate the effect of Anadara Granosa clamshell powder utilization as an aggregate substitution on the concrete compressive strength. The sample size was made of cylinders with a size of 10 cm x 20 cm with variations of clamshell powder 10%, 20% and 30% from the fine aggregate volume then soaked for 28 days as per the method of the Indonesian National Standard. The evaluation results exhibited that the slump value exceeded the slump value of normal concrete with a slump value of 0% = 160 mm, 10% = 165 mm, 20% = 180 mm and 30% = 180 mm. Additionally, it was found that the concrete compressive strength obtained post 28 days were 20.78 Mpa, 21.95 Mpa, 21.17 Mpa and 24.28 Mpa for normal concrete (0%), substitution concrete (10%), substitution concrete (20%) and substitution concrete (30%), respectively. Leading on from these results, it was concluded that the increment of Anadara Granosa clamshell powder substitution led to the increase of concrete compressive strength test.


2018 ◽  
Vol 6 (3) ◽  
pp. 035703 ◽  
Author(s):  
Tej Singh ◽  
Mukesh Kumar Rathi ◽  
Amar Patnaik ◽  
Ranchan Chauhan ◽  
Sharafat Ali ◽  
...  

2016 ◽  
Vol 124 ◽  
pp. 906-909 ◽  
Author(s):  
Blessen Skariah Thomas ◽  
Sanjeev Kumar ◽  
Priyansha Mehra ◽  
Ramesh Chandra Gupta ◽  
Miquel Joseph ◽  
...  

Author(s):  
Martina Záleská ◽  
David Čítek ◽  
Milena Pavlíková ◽  
Vojtěch Bazgier ◽  
Zbyšek Pavlík

Reusing rubber particles from used tires is good for the environment and, moreover, the world's population is becoming progressively conscious that a very high demand for natural resources is unsustainable. As the concrete industry consumes high amounts of natural resources, both for clinkering and gravel aggregate production, one must focus on its sustainability, considering environmental and economic issues. Therefore, reuse of waste tire rubber in concrete or in other composite materials is a logical solution for sustainable production of construction materials. Hence, the paper is aimed at the development and testing of lightweight concrete composed of a high volume of crushed waste tire rubber used as partial replacement of natural silica aggregate. In order to access the effect of incorporation waste tire rubber-based aggregate in concrete composition, reference concrete mix based on silica aggregate only is studied as well. The crushed waste tire rubber is characterized by its powder density, specific density, and particle size distribution. Specific attention is paid to thermal transport and storage properties of waste rubber that are examined in dependence on compaction time. For the developed lightweight concrete, mechanical, hygric, and thermal properties are tested. The tested lightweight concrete is found to be alternative and environmentally friendly construction material possessing improved thermal insulation function, interesting hygric parameters and sufficient mechanical resistance.


Sign in / Sign up

Export Citation Format

Share Document