scholarly journals The protective effects of rapamycin on intestinal ischemia/reperfusion induced remote lung injury in mice

2014 ◽  
Vol 7 (1) ◽  
pp. 40a-40a
Author(s):  
Takaya Iida ◽  
Yuji Naito ◽  
Tomohisa Takagi ◽  
Kazuhiro Katada ◽  
Katsura Mizushima ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Meng Chen ◽  
Xue-Tao Yan ◽  
Li Ye ◽  
Jun-Jiao Tang ◽  
Zong-Ze Zhang ◽  
...  

Intestinal ischemia/reperfusion (I/R) is a clinical emergency, which often causes lung injury with high morbidity and mortality. Although dexmedetomidine has been identified to have a protective effect on lung injury caused by intestinal I/R, its specific mechanism is still elucidated. In recent years, the cannabinoid (CB2) receptor pathway has been found to be involved in I/R injury of some organs. In the current study, we investigated whether the CB2 receptor pathway contributes to the protective effect of dexmedetomidine on the intestinal I/R-induced lung injury in rats. Dexmedetomidine treatment upregulated the expression of CB2 receptor and suppressed the I/R-induced increases in lung injury scores, inflammatory cell infiltration, lung wet/dry ratio, MPO activity, MDA level, inflammatory cytokines, and caspase-3 expression while augmenting SOD activity and Bcl-2 expression, indicating attenuation of lung injury. Dexmedetomidine treatment also increased the expression of Akt. The protective effects of dexmedetomidine treatment were reversed by the CB2 receptor antagonist AM630 or the PI3K inhibitor wortmannin. And the CB2 receptor antagonist AM630 also downregulated the expression of Akt. Thus, our findings suggest that treatment with dexmedetomidine provides a protective role against lung injury caused by intestinal I/R in rats, possibly due to the upregulation of the CB2 receptor, followed by the activation of the PI3K/Akt pathway.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Ying Jiang ◽  
Zhen Zhou ◽  
Qing-tao Meng ◽  
Qian Sun ◽  
Wating Su ◽  
...  

Objective. Intestinal ischemia reperfusion (II/R) injury plays a critical role in remote organ dysfunction, such as lung injury, which is associated with nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. In the present study, we tested whether ginsenoside Rb1 attenuated II/R induced lung injury by Nrf2/HO-1 pathway.Methods. II/R injury was induced in male C57BL/6J mice by 45 min of superior mesenteric artery (SMA) occlusion followed by 2 hours of reperfusion. Ginsenoside Rb1 was administrated prior to reperfusion with or without ATRA (all-transretinoic acid, the inhibitor of Nrf2/ARE signaling pathway) administration before II/R.Results. II/R induced lung histological injury, which is accompanied with increased levels of malondialdehyde (MDA), interleukin- (IL-) 6, and tumor necrosis factor- (TNF-)αbut decreased levels of superoxide dismutase (SOD) and IL-10 in the lung tissues. Ginsenoside Rb1 reduced lung histological injury and the levels of TNF-αand MDA, as well as wet/dry weight ratio. Interestingly, the increased Nrf2 and HO-1 expression induced by II/R in the lung tissues was promoted by ginsenoside Rb1 treatment. All these changes could be inhibited or prevented by ATRA.Conclusion. Ginsenoside Rb1 is capable of ameliorating II/R induced lung injuries by activating Nrf2/HO-1 pathway.


2002 ◽  
Vol 183 (1) ◽  
pp. 70-74 ◽  
Author(s):  
M.Ayhan Kuzu ◽  
Cüneyt Köksoy ◽  
Işınsu Kuzu ◽  
Ismet Gürhan ◽  
Hakan Ergün ◽  
...  

2021 ◽  
Vol 263 ◽  
pp. 291
Author(s):  
Georgia Kostopanagiotou ◽  
Efthimios Avgerinos ◽  
Konstantinos Kostopanagiotou ◽  
Nikolaos Arkadopoulos ◽  
Ioanna Andreadou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document