scholarly journals Ice Concentration Estimation Method with Satellite based Microwave Radiometer by Means of Inversion Theory

Author(s):  
Kohei Arai
2021 ◽  
Vol 13 (6) ◽  
pp. 1139
Author(s):  
David Llaveria ◽  
Juan Francesc Munoz-Martin ◽  
Christoph Herbert ◽  
Miriam Pablos ◽  
Hyuk Park ◽  
...  

CubeSat-based Earth Observation missions have emerged in recent times, achieving scientifically valuable data at a moderate cost. FSSCat is a two 6U CubeSats mission, winner of the ESA S3 challenge and overall winner of the 2017 Copernicus Masters Competition, that was launched in September 2020. The first satellite, 3Cat-5/A, carries the FMPL-2 instrument, an L-band microwave radiometer and a GNSS-Reflectometer. This work presents a neural network approach for retrieving sea ice concentration and sea ice extent maps on the Arctic and the Antarctic oceans using FMPL-2 data. The results from the first months of operations are presented and analyzed, and the quality of the retrieved maps is assessed by comparing them with other existing sea ice concentration maps. As compared to OSI SAF products, the overall accuracy for the sea ice extent maps is greater than 97% using MWR data, and up to 99% when using combined GNSS-R and MWR data. In the case of Sea ice concentration, the absolute errors are lower than 5%, with MWR and lower than 3% combining it with the GNSS-R. The total extent area computed using this methodology is close, with 2.5% difference, to those computed by other well consolidated algorithms, such as OSI SAF or NSIDC. The approach presented for estimating sea ice extent and concentration maps is a cost-effective alternative, and using a constellation of CubeSats, it can be further improved.


2020 ◽  
Vol 12 (7) ◽  
pp. 1060 ◽  
Author(s):  
Lise Kilic ◽  
Catherine Prigent ◽  
Filipe Aires ◽  
Georg Heygster ◽  
Victor Pellet ◽  
...  

Over the last 25 years, the Arctic sea ice has seen its extent decline dramatically. Passive microwave observations, with their ability to penetrate clouds and their independency to sunlight, have been used to provide sea ice concentration (SIC) measurements since the 1970s. The Copernicus Imaging Microwave Radiometer (CIMR) is a high priority candidate mission within the European Copernicus Expansion program, with a special focus on the observation of the polar regions. It will observe at 6.9 and 10.65 GHz with 15 km spatial resolution, and at 18.7 and 36.5 GHz with 5 km spatial resolution. SIC algorithms are based on empirical methods, using the difference in radiometric signatures between the ocean and sea ice. Up to now, the existing algorithms have been limited in the number of channels they use. In this study, we proposed a new SIC algorithm called Ice Concentration REtrieval from the Analysis of Microwaves (IceCREAM). It can accommodate a large range of channels, and it is based on the optimal estimation. Linear relationships between the satellite measurements and the SIC are derived from the Round Robin Data Package of the sea ice Climate Change Initiative. The 6 and 10 GHz channels are very sensitive to the sea ice presence, whereas the 18 and 36 GHz channels have a better spatial resolution. A data fusion method is proposed to combine these two estimations. Therefore, IceCREAM will provide SIC estimates with the good accuracy of the 6+10GHz combination, and the high spatial resolution of the 18+36GHz combination.


2021 ◽  
Author(s):  
Valentin Ludwig ◽  
Gunnar Spreen

<p>Sea–ice concentration, the surface fraction of ice in a given area, is a key component of the Arctic climate system, governing for example the ocean–atmosphere heat exchange. Satellite–based remote sensing offers the possibility for large–scale monitoring of the sea–ice concentration. Using passive microwave measurements, it is possible to observe the sea–ice concentration all year long, almost independently of cloud coverage. The spatial resolution of these measurements is limited to 5 km and coarser. Data from the visible and thermal infrared spectrum offer finer resolutions of 250 m–1 km, but need clear–sky scenes and, in case of visible data, sunlight. In previous work, we developed and analysed a merged dataset of passive microwave and thermal infrared data, combining AMSR2 and MODIS satellite data at 1 km spatial resolution. It has benefits over passive microwave data in terms of the finer spatial resolution and an enhanced potential for lead detection. At the same time, it outperforms thermal infrared data due to its spatially continuous coverage and the statistical consistency with the extensively evaluated passive microwave data. Due to higher surface temperatures in summer, the thermal–infrared based retrieval is limited to winter and spring months. In this contribution, we present first results of extending the existing dataset to summer by using visible data instead of thermal infrared data. The reflectance contrast between ice and water is used for the sea–ice concentration retrieval and results of merging visible and microwave data at 1 km spatial resolution are presented. Difficulties for both, the microwave and visual, data are surface melt processes during summer, which make sea–ice concentration retrieval more challenging. The merged microwave, infrared and visual dataset opens the possibility for a year–long, spatially continuous sea ice concentration dataset at a spatial resolution of 1 km.</p>


2016 ◽  
Author(s):  
Susana Fernandez ◽  
Rolf Rüfenacht ◽  
Niklaus Kämpfer ◽  
Thierry Portafaix ◽  
Françoise Posny ◽  
...  

Abstract. Abstract. Ozone is a species of primary interest as it performs a key role in the middle atmosphere and its monitoring is thus necessary. At the Institute of Applied Physics of the University of Bern, Switzerland, we built a new ground based microwave radiometer, GROMOS-C (GRound based Ozone MOnitoring System for Campaigns). It has a compact design and can be operated at remote places with very little maintenance requirements, being therefore suitable for remote deployments. It has been conceived to measure the vertical distribution of ozone in the middle atmosphere, by observing pressure broadened emission spectra at a frequency of 110.836 GHz. In addition, meridional and zonal wind profiles can be retrieved, based on the Doppler shift of the ozone line measured in the 4 directions of observation (North-East-South-West). In June 2014 the radiometer was installed in the Maïdo observatory, on La Réunion Island (21.2° S, 55.5° E). High resolution ozone spectra were continuously recorded during 7 months. Vertical profiles of ozone have been retrieved through an optimal estimation inversion process, using the Atmospheric Radiative Transfer Simulator ARTS2 as the forward model. The best estimate of the vertical profile is done by means of the optimal estimation method. The validation is performed against ozone profiles from the Microwave Limb Sounder (MLS) on the Aura satellite, the ozone lidar located in the observatory and with ozone profiles from weekly radiosondes. Zonal and meridional winds retrieved from GROMOS-C data are validated against another wind radiometer located in situ, WIRA. In addition, we compare both ozone and winds with ECMWF model data. Results show that GROMOS-C provides reliable ozone profiles between 30 to 0.02 hPa. The comparison with lidar shows a very good agreement at all levels. The accordance with MLS is within less than 10 % for pressure levels between 25 and 0.2 hPa.


Sign in / Sign up

Export Citation Format

Share Document