scholarly journals Construction of a Model and Development of an Algorithm for Solving the Wave Problem under Pulsed Loading

Author(s):  
Khabdolda Bolat ◽  
Zhuzbayev Serik ◽  
Sabitova Diana S ◽  
Aitkenova Ailazzat A ◽  
Serikbayeva Sandugash ◽  
...  
Keyword(s):  
Author(s):  
Biswajit Basu ◽  
Calin I. Martin

AbstractWe are concerned here with an analysis of the nonlinear irrotational gravity water wave problem with a free surface over a water flow bounded below by a flat bed. We employ a new formulation involving an expression (called flow force) which contains pressure terms, thus having the potential to handle intricate surface dynamic boundary conditions. The proposed formulation neither requires the graph assumption of the free surface nor does require the absence of stagnation points. By way of this alternative approach we prove the existence of a local curve of solutions to the water wave problem with fixed flow force and more relaxed assumptions.


2012 ◽  
Vol 2309 (1) ◽  
pp. 200-205
Author(s):  
William Rahmeyer ◽  
J. M. Clegg ◽  
S. L. Barfuss

Recent improvements and the widening of the I-84 Bridge crossing of the New York Canal in Boise, Idaho, have increased the number of bridge columns from 28 to 60. The resulting structure has two parallel rows of columns that extend across the width of the bridge longitudinally within the canal. After the widening of the bridge and addition of the bridge columns, the canal began experiencing an oscillating wave phenomenon that originated from the bridge columns and caused erosion of upstream and downstream canal banks and bridge abutments. A physical model study was conducted to investigate the wave phenomenon and determine what modifications to the columns or canal would be necessary to prevent the wave oscillations. The physical model was successful in simulating the wave phenomenon, and four different modifications for resolving the wave problem were tested in the model. A unique solution was found that used precast nose cones attached to selected columns. The nose cones have been installed in the prototype bridge crossing, and no wave oscillations have occurred since installation. This paper discusses the study to simulate the wave phenomenon and the four modifications that were evaluated to reduce or prevent wave oscillations.


A variant of the Stoneley-wave problem, namely slip waves between two homogeneous elastic half-spaces whose interface is incapable of supporting shear stresses, is studied. For two isotropic half-spaces there is either no or one slip-wave mode. In the case of anisotropic half-spaces, the possibility of a new slip-wave mode, called the second slip-wave mode, arises. The case of two identical anisotropic half-spaces of the same orientation is discussed in detail; criteria for the existence of a second slip-wave mode in terms of the nature of the transonic state are developed. It is concluded that for many anisotropic media a second slip-wave mode will exist within certain ranges of orientation of the slip-wave geometry. Numerical computations for iron (cubic symmetry) demonstrate that second slip-wave modes indeed exist in this material.


Sign in / Sign up

Export Citation Format

Share Document