scholarly journals Automatic Heart Disease Classification Using Ensemble Features Extraction Mechanism from ECG Signals

Webology ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 790-805
Author(s):  
Avinash L. Golande ◽  
T. Pavankumar

The heart disease detection and classification using the cost-effective tool electrocardiogram (ECG) becomes interesting research considering smart healthcare applications. Automation, accuracy, and robustness are vital demands for an ECG-based heart disease prediction system. Deep learning brings automation to the applications like Computer-Aided Diagnosis (CAD) systems with accuracy improvement compromising robustness. We propose the novel ECG-based heart disease prediction system using the hybrid mechanism to satisfy the automation, accuracy, and robustness requirements. We design the model via the steps of pre-processing, hybrid features formation, and classification. The ECG pre-processing is aiming at suppressing the baseline and powerline interference without loss of heartbeats. We propose a hybrid mechanism that consists of handcrafted and automatic Convolutional Neural Network (CNN) lightweight features for efficient classification. The hybrid feature vector is fed to the deep learning classifier Long Term Short Memory (LSTM) sequentially to predict the disease. The simulation results show that the proposed model reduces the diagnosis errors and time compare to state-of-art methods.

2020 ◽  
Vol 63 ◽  
pp. 208-222 ◽  
Author(s):  
Farman Ali ◽  
Shaker El-Sappagh ◽  
S.M. Riazul Islam ◽  
Daehan Kwak ◽  
Amjad Ali ◽  
...  

2021 ◽  
Vol 1916 (1) ◽  
pp. 012236

This article has been retracted by IOP Publishing following an allegation that this article contains text overlap from multiple unreferenced sources [1, 2]. IOP Publishing has investigated and agree the article constitutes plagiarism. IOP Publishing also expresses concern regarding a number of nonsensical phrases used in the article, which suggests the article may have been created at least partly by artificial intelligence or translation software. IOP Publishing also notes sections of this article were published in multiple other journals at a similar time [3, 4, 5, 6], by different author groups. These issues all bring the legitimacy of this article into serious doubt. The authors have not responded to confirm whether they agree or disagree to this retraction. IOP Publishing wishes to credit Problematic Paper Screener [7] for bringing some of these issues to our attention. 1. "Deep learning" Wikipedia, Wikimedia Foundation, https://en.wikipedia.org/wiki/Deep_learning 2. "Cardiovascular disease" Wikipedia, Wikimedia Foundation,https://en.wikipedia.org/wiki/Cardiovascular_disease 3. Sukanth, N. et al., 2021. Heart Disease Classification using Machine Learning Algorithm. International Journal of Innovative Research in Computer and Communication Engineering, 9(3), pp.1108-1114. 4. Siamala Devi, S., Harini Karthika, G. & Deepika, M., 2021. Machine learning based classification for heart disease identification. Journal of Physics: Conference Series, 1916. 5. Priyadharshini, K. et al., 2021. Coronary Infarction Prediction Using Correlation Analysis aspects based on Parallel Distributed Processing Network. Annals of the Romanian Society for Cell Biology, 25(4), pp.2864-2869. 6. Vennila, V. et al., 2021. Enhanced Deep Learning Assisted Convolutional Neural Network for Heart Disease Prediction. Annals of the Romanian Society for Cell Biology, 25(3), pp.8467-8474. 7. Cabanac G, Labbe C, Magazinov A, 2021, arXiv:2107.06751v1 Retraction published: 17 December 2021


Author(s):  
Sudarshan Nandy ◽  
Mainak Adhikari ◽  
Venki Balasubramanian ◽  
Varun G. Menon ◽  
Xingwang Li ◽  
...  

Author(s):  
Wan Adlina Husna Wan Azizan ◽  
A'zraa Afhzan Ab Rahim ◽  
Siti Lailatul Mohd Hassan ◽  
Ili Shairah Abdul Halim ◽  
Noor Ezan Abdullah

Sign in / Sign up

Export Citation Format

Share Document