scholarly journals Retraction: Machine Learning Based Classification Models for Heart Disease Prediction (J. Phys.: Conf. Ser 1916 012092)

2021 ◽  
Vol 1916 (1) ◽  
pp. 012236

This article has been retracted by IOP Publishing following an allegation that this article contains text overlap from multiple unreferenced sources [1, 2]. IOP Publishing has investigated and agree the article constitutes plagiarism. IOP Publishing also expresses concern regarding a number of nonsensical phrases used in the article, which suggests the article may have been created at least partly by artificial intelligence or translation software. IOP Publishing also notes sections of this article were published in multiple other journals at a similar time [3, 4, 5, 6], by different author groups. These issues all bring the legitimacy of this article into serious doubt. The authors have not responded to confirm whether they agree or disagree to this retraction. IOP Publishing wishes to credit Problematic Paper Screener [7] for bringing some of these issues to our attention. 1. "Deep learning" Wikipedia, Wikimedia Foundation, https://en.wikipedia.org/wiki/Deep_learning 2. "Cardiovascular disease" Wikipedia, Wikimedia Foundation,https://en.wikipedia.org/wiki/Cardiovascular_disease 3. Sukanth, N. et al., 2021. Heart Disease Classification using Machine Learning Algorithm. International Journal of Innovative Research in Computer and Communication Engineering, 9(3), pp.1108-1114. 4. Siamala Devi, S., Harini Karthika, G. & Deepika, M., 2021. Machine learning based classification for heart disease identification. Journal of Physics: Conference Series, 1916. 5. Priyadharshini, K. et al., 2021. Coronary Infarction Prediction Using Correlation Analysis aspects based on Parallel Distributed Processing Network. Annals of the Romanian Society for Cell Biology, 25(4), pp.2864-2869. 6. Vennila, V. et al., 2021. Enhanced Deep Learning Assisted Convolutional Neural Network for Heart Disease Prediction. Annals of the Romanian Society for Cell Biology, 25(3), pp.8467-8474. 7. Cabanac G, Labbe C, Magazinov A, 2021, arXiv:2107.06751v1 Retraction published: 17 December 2021

2021 ◽  
Vol 1916 (1) ◽  
pp. 012237

This article has been retracted by IOP Publishing following an allegation that this article contains text overlap from multiple unreferenced sources [1, 2]. IOP Publishing has investigated and agree the article constitutes plagiarism. IOP Publishing also expresses concern regarding a number of nonsensical phrases used in the article, which suggests the article may have been created at least partly by artificial intelligence or translation software. IOP Publishing also notes sections of this article were published in multiple other journals at a similar time [3, 4, 5, 6], by different author groups. These issues all bring the legitimacy of this article into serious doubt. The authors have not responded to confirm whether they agree or disagree to this retraction. IOP Publishing wishes to credit Problematic Paper Screener [7] for bringing some of these issues to our attention. 1. "Machine learning" Wikipedia, Wikimedia Foundation,https://en.wikipedia.org/wiki/Machine_learning 2. "Cardiovascular disease" Wikipedia, Wikimedia Foundation, https://en.wikipedia.org/wiki/Cardiovascular_disease 3. Sukanth, N. et al., 2021. Heart Disease Classification using Machine Learning Algorithm. International Journal of Innovative Research in Computer and Communication Engineering, 9(3), pp.1108-1114. 4. Karthikeyan, N. et al., 2021. Machine learning based classification models for heart disease prediction. Journal of Physics: Conference Series, 1916. 5. Priyadharshini, K. et al., 2021. Coronary Infarction Prediction Using Correlation Analysis aspects based on Parallel Distributed Processing Network. Annals of the Romanian Society for Cell Biology, 25(4), pp.2864-2869. 6. Vennila, V. et al., 2021. Enhanced Deep Learning Assisted Convolutional Neural Network for Heart Disease Prediction. Annals of the Romanian Society for Cell Biology, 25(3), pp.8467-8474. 7. Cabanac G, Labbe C, Magazinov A, 2021, arXiv:2107.06751v1 Retraction published: 17 December 2021


2021 ◽  
Vol 1 (1) ◽  
pp. 146-176
Author(s):  
Israa Nadher ◽  
Mohammad Ayache ◽  
Hussein Kanaan

Abstract—Information decision support systems are becomingmore in use as we are living in the era of digital data andrise of artificial intelligence. Heart disease as one of the mostknown and dangerous is getting very important attention, thisattention is translated into digital and prediction system thatdetects the presence of disease according to the available dataand information. Such systems faced a lot of problems since thefirst rise, but now with the deveolopment of machine learnigfield we are using them in developing new models to detect thepresence of this disease, in addition to algorithms data is veryimportant which also form the heart of the predicton systems,as we know prediction algorithms take decisions and thesedecisions must be based on facts, and these facts are extractedfrom data, as a result data is the starting point of every system.In this paper we propose a Heart Disease Prediction Systemusing Machine Learning Algorithms, in terms of data we usedCleveland dataset, this dataset is normalized then divided intothree scnearios in terms of traning and testing respectively,80%-20%, 50%-50%, 30%-70%. In each case of dataset ifit is normalized or not we will have these three scenarios.We used three machine learning algorithms for every scenarioof the mentioned before which are SVM, SMO and MLP, inthese algorithms we’ve used two different kernels to test theresults upon that. These two types of simulation are added tothe collection of scenarios mentioned above to become as thefollowing we have at the main level two types normalized andunnormalized dataset, then for each one we have three typesaccording to the amount of training and testing dataset, thenfor each of these scenarios we have two scenarios according tothe type of kernel to become 30 scenarios in total, our proposedsystem have shown a dominance in terms of accuracy over theother previous works.


2021 ◽  
Vol 1 (4) ◽  
pp. 268-280
Author(s):  
Bamanga Mahmud , , , Ahmad ◽  
Ahmadu Asabe Sandra ◽  
Musa Yusuf Malgwi ◽  
Dahiru I. Sajoh

For the identification and prediction of different diseases, machine learning techniques are commonly used in clinical decision support systems. Since heart disease is the leading cause of death for both men and women around the world. Heart is one of the essential parts of human body, therefore, it is one of the most critical concerns in the medical domain, and several researchers have developed intelligent medical devices to support the systems and further to enhance the ability to diagnose and predict heart diseases. However, there are few studies that look at the capabilities of ensemble methods in developing a heart disease detection and prediction model. In this study, the researchers assessed that how to use ensemble model, which proposes a more stable performance than the use of base learning algorithm and these leads to better results than other heart disease prediction models. The University of California, Irvine (UCI) Machine Learning Repository archive was used to extract patient heart disease data records. To achieve the aim of this study, the researcher developed the meta-algorithm. The ensemble model is a superior solution in terms of high predictive accuracy and diagnostics output reliability, as per the results of the experiments. An ensemble heart disease prediction model is also presented in this work as a valuable, cost-effective, and timely predictive option with a user-friendly graphical user interface that is scalable and expandable. From the finding, the researcher suggests that Bagging is the best ensemble classifier to be adopted as the extended algorithm that has the high prediction probability score in the implementation of heart disease prediction.


Webology ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 790-805
Author(s):  
Avinash L. Golande ◽  
T. Pavankumar

The heart disease detection and classification using the cost-effective tool electrocardiogram (ECG) becomes interesting research considering smart healthcare applications. Automation, accuracy, and robustness are vital demands for an ECG-based heart disease prediction system. Deep learning brings automation to the applications like Computer-Aided Diagnosis (CAD) systems with accuracy improvement compromising robustness. We propose the novel ECG-based heart disease prediction system using the hybrid mechanism to satisfy the automation, accuracy, and robustness requirements. We design the model via the steps of pre-processing, hybrid features formation, and classification. The ECG pre-processing is aiming at suppressing the baseline and powerline interference without loss of heartbeats. We propose a hybrid mechanism that consists of handcrafted and automatic Convolutional Neural Network (CNN) lightweight features for efficient classification. The hybrid feature vector is fed to the deep learning classifier Long Term Short Memory (LSTM) sequentially to predict the disease. The simulation results show that the proposed model reduces the diagnosis errors and time compare to state-of-art methods.


Skin disease is the most common health problems worldwide.Human skin is one of the difficult areas topredict. The difficulty is due to rough areas, irregular skin tones, various factors like burns, moles. We have to identify the diseases excluding these factors.In a developing country like India, it is expensive for a large number of people to go to the dermatologist for their skin disease problem.Every year a large number of population in developing countries like India suffer due to different types of skin diseases. So the need for automatic skin disease prediction is increasing for the patients and as well as the dermatologist. In this paper, a method is proposed that uses computer vision-based techniques to detectvariouskinds of dermatological skin diseases. Inception_v3, Mobilenet, Resnetare three deep learning algorithms used for feature extraction in a medical image and machine learning algorithm namely Logistic Regression is used for training and testing the medical images.Using the combined architecture of the three convolutional neural networks considerable efficiency can be achieved.


2016 ◽  
Author(s):  
Saman Sarraf ◽  
Ghassem Tofighi

Over the past decade, machine learning techniques and in particular predictive modeling and pattern recognition in biomedical sciences, from drug delivery systems to medical imaging, have become one of the most important methods of assisting researchers in gaining a deeper understanding of issues in their entirety and solving complex medical problems. Deep learning is a powerful machine learning algorithm in classification that extracts low- to high-level features. In this paper, we employ a convolutional neural network to distinguish an Alzheimer′s brain from a normal, healthy brain. The importance of classifying this type of medical data lies in its potential to develop a predictive model or system in order to recognize the symptoms of Alzheimer′s disease when compared with normal subjects and to estimate the stages of the disease. Classification of clinical data for medical conditions such as Alzheimer′s disease has always been challenging, and the most problematic aspect has always been selecting the strongest discriminative features. Using the Convolutional Neural Network (CNN) and the famous architecture LeNet-5, we successfully classified functional MRI data of Alzheimer′s subjects from normal controls, where the accuracy of testing data reached 96.85%. This experiment suggests that the shift and scale invariant features extracted by CNN followed by deep learning classification represents the most powerful method of distinguishing clinical data from healthy data in fMRI. This approach also allows for expansion of the methodology to predict more complicated systems.


Author(s):  
Fathania Firwan Firdaus ◽  
Hanung Adi Nugroho ◽  
Indah Soesanti

Cardiovascular disease has been the number one illness to cause death in the world for years. As information technology develops, many researchers have conducted studies on a computer-assisted diagnosis for heart disease. Predicting heart disease using a computer-assisted system can reduce time and costs. Feature selection can be used to choose the most relevant variables for heart disease. It includes filter, wrapper, embedded, and hybrid. The filter method excels in computation speed. The wrapper and embedded methods consider feature dependencies and interact with classifiers. The hybrid method takes advantage of several methods. Classification is a data mining technique to predict heart disease. It includes traditional machine learning, ensemble learning, hybrid, and deep learning. Traditional machine learning uses a specific algorithm. The ensemble learning combines the predictions of multiple classifiers to improve the performance of a single classifier. The hybrid approach combines some techniques and takes advantage of each method. Deep learning does not require a predetermined feature engineering. This research provides an overview of feature selection and classification methods for the prediction of heart disease in the last ten years. Thus, it can be used as a reference in choosing a method for heart disease prediction for future research.


2021 ◽  
Vol 3 (3) ◽  
pp. 542-558
Author(s):  
Lijuan Tan ◽  
Jinzhu Lu ◽  
Huanyu Jiang

Tomato production can be greatly reduced due to various diseases, such as bacterial spot, early blight, and leaf mold. Rapid recognition and timely treatment of diseases can minimize tomato production loss. Nowadays, a large number of researchers (including different institutes, laboratories, and universities) have developed and examined various traditional machine learning (ML) and deep learning (DL) algorithms for plant disease classification. However, through pass survey analysis, we found that there are no studies comparing the classification performance of ML and DL for the tomato disease classification problem. The performance and outcomes of different traditional ML and DL (a subset of ML) methods may vary depending on the datasets used and the tasks to be solved. This study generally aimed to identify the most suitable ML/DL models for the PlantVillage tomato dataset and the tomato disease classification problem. For machine learning algorithm implementation, we used different methods to extract disease features manually. In our study, we extracted a total of 52 texture features using local binary pattern (LBP) and gray level co-occurrence matrix (GLCM) methods and 105 color features using color moment and color histogram methods. Among all the feature extraction methods, the COLOR+GLCM method obtained the best result. By comparing the different methods, we found that the metrics (accuracy, precision, recall, F1 score) of the tested deep learning networks (AlexNet, VGG16, ResNet34, EfficientNet-b0, and MobileNetV2) were all better than those of the measured machine learning algorithms (support vector machine (SVM), k-nearest neighbor (kNN), and random forest (RF)). Furthermore, we found that, for our dataset and classification task, among the tested ML/DL algorithms, the ResNet34 network obtained the best results, with accuracy of 99.7%, precision of 99.6%, recall of 99.7%, and F1 score of 99.7%.


Sign in / Sign up

Export Citation Format

Share Document