scholarly journals Waste-Based Second-Generation Bioethanol: A Solution for Future Energy Crisis

2021 ◽  
Vol 11 (1) ◽  
pp. 275-285
Author(s):  
Yasindra Sandamini Chandrasiri ◽  
Lakshika Iroshani Weerasinghe ◽  
Tharindu Madusanka ◽  
Pathmalal Manage

The demand for more environmentally friendly alternative renewable fuels is growing as fossil fuel resources are depleting significantly. Consequently, bioethanol has attracted interest as a potentially viable fuel. The key steps in second-generation bioethanol production include pretreatment, saccharification, and fermentation. The present study employed simultaneous saccharification and fermentation (SSF) of cellulose through bacterial pathways to generate second-generation bioethanol utilizing corncobs and paper waste as lignocellulosic biomass. Mechanical and chemical pretreatments were applied to both biomasses. Then, two bacterial strains, Bacillus sp. and Norcadiopsis sp., hydrolysed the pretreated biomass and fermented it along with Achromobacter sp., which was isolated and characterized from a previous study. Bioethanol production followed by 72 h of biomass hydrolysis employing Bacillus sp. and Norcadiopsis sp., and then 72 h of fermentation using Achromobacter sp. Using solid phase micro extraction combined with GCMS the ethanol content was quantified. SSF of alkaline pretreated paper waste hydrolysed by Bacillus sp. following the fermentation by Achromobacter sp. showed the maximum ethanol percentage of 0.734±0.154. Alkaline pretreated corncobs hydrolyzed by Norcadiopsis sp. yielded the lowest ethanol percentage of 0.155±0.154. The results of the study revealed that paper waste is the preferred feedstock for generating second-generation bioethanol. To study the possible use of ethanol-diesel blends as an alternative biofuel E2, E5, E7, and E10 blend emulsions were prepared mixing commercially available diesel with ethanol. The evaluated physico-chemical characteristics of the ethanol-diesel emulsions fulfilled the Ceypetco requirements except for the flashpoint revealing that the lower ethanol-diesel blends are a promising alternative to transport fuels. As a result, the current study suggests that second generation bioethanol could be used as a renewable energy source to help alleviate the energy crisis..

2013 ◽  
Vol 6 (1) ◽  
pp. 168 ◽  
Author(s):  
Lorenzo Favaro ◽  
Marina Basaglia ◽  
Alberto Trento ◽  
Eugéne Van Rensburg ◽  
Maria García-Aparicio ◽  
...  

2021 ◽  
Vol 29 ◽  
pp. 13-19
Author(s):  
R. Y. Blume ◽  
O.V. Melnychuk ◽  
S.P. Ozheredov ◽  
D.B. Rakhmetov ◽  
Y.B. Blume

Aim. Main aim of this research was the evaluation of theoretical bioethanol yield (per ha) from hexaploid giant miscanthus (Miscanthus х giganteus) and further comparison with conventional triploid form as well as with other bioethanol crops. Methods. Several mathematic functions were determined that describe yearly yield dynamics and equations, which were used in calculations of theoretical bioethanol yield. Results. The theoretical bioethanol yield was evaluated for different hexaploid miscanthus lines. The most productive in terms of ethanol yield were lines 108 and 202, from which potential bioethanol yield was found to be higher than in control line (6451 L/ha) by 10.7 % and 14.2% respectively and can reach 7144 L/ha and 7684 L/ha. Conclusions. It was determined that the most productive lines of polyploid miscanthus (lines 108 and 202) are able to compete with other plant cellulosic feedstocks for second-generation bioethanol production in Ukraine. However, these lines show bioethanol productivity than sweet sorghum, in the case when sweet sorghum is processed for obtainment of both first- and second-generation bioethanol. Keywords: bioenergy crops, biofuels, giant miscanthus, Miscanthus, polyploidy, second-generation bioethanol.


2019 ◽  
Vol 126 ◽  
pp. 84-93 ◽  
Author(s):  
Neil Priharto ◽  
Frederik Ronsse ◽  
Wolter Prins ◽  
Idoia Hita ◽  
Peter J. Deuss ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document