Focal areas of a high rate of fragile X in Indonesia: a long term follow up

2019 ◽  
Vol 5 (2) ◽  
pp. 67-68
Author(s):  
Sultana MH Faradz ◽  
Tri Indah Winarni

Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability (ID) and a leading cause of autism spectrum disorder (ASD). FXS is caused by an expansion of CGG repeats >200 in the 5′ untranslated region of the promotor region fragile X mental retardation 1 gene (FMR1), which is located on Xq27.3.  The abnormal CGG expansion leads to methylation and transcriptional silencing of the FMR1 gene, resulting in a reduction or loss of fragile X mental retardation 1 protein (FMRP) and causes long, thin, and immature dendritic spines, which lead to deficits in cognitive function, behavioral problems, and learning ability

2019 ◽  
Vol 15 (4) ◽  
pp. 251-258 ◽  
Author(s):  
Dragana Protic ◽  
Maria J. Salcedo-Arellano ◽  
Jeanne Barbara Dy ◽  
Laura A. Potter ◽  
Randi J. Hagerman

Fragile X Syndrome (FXS) is the most common cause of inherited intellectual disability with prevalence rates estimated to be 1:5,000 in males and 1:8,000 in females. The increase of >200 Cytosine Guanine Guanine (CGG) repeats in the 5’ untranslated region of the Fragile X Mental Retardation 1 (FMR1) gene results in transcriptional silencing on the FMR1 gene with a subsequent reduction or absence of fragile X mental retardation protein (FMRP), an RNA binding protein involved in the maturation and elimination of synapses. In addition to intellectual disability, common features of FXS are behavioral problems, autism, language deficits and atypical physical features. There are still no currently approved curative therapies for FXS, and clinical management continues to focus on symptomatic treatment of comorbid behaviors and psychiatric problems. Here we discuss several treatments that target the neurobiological pathway abnormal in FXS. These medications are clinically available at present and the data suggest that these medications can be helpful for those with FXS.


2012 ◽  
Vol 58 (3) ◽  
pp. 590-598 ◽  
Author(s):  
David E Godler ◽  
Howard R Slater ◽  
Quang M Bui ◽  
Elsdon Storey ◽  
Michele Y Ono ◽  
...  

Abstract BACKGROUND Cognitive status in females with mutations in the FMR1 (fragile X mental retardation 1) gene is highly variable. A biomarker would be of value for predicting which individuals were liable to develop cognitive impairment and could benefit from early intervention. A detailed analysis of CpG sites bridging exon 1 and intron 1 of FMR1, known as fragile X–related epigenetic element 2 (FREE2), suggests that a simple blood test could identify these individuals. METHODS Study participants included 74 control females (<40 CGG repeats), 62 premutation (PM) females (55–200 CGG repeats), and 18 full-mutation (FM) females assessed with Wechsler intelligence quotient (IQ) tests. We used MALDI-TOF mass spectrometry to determine the methylation status of FREE2 CpG sites that best identified low-functioning (IQ <70) FM females (>200 CGG repeats), compared the results with those for Southern blot FMR1 activation ratios, and related these assessments to the level of production of the FMR1 protein product in blood. RESULTS A methylation analysis of intron 1 CpG sites 10–12 showed the highest diagnostic sensitivity (100%) and specificity (98%) of all the molecular measures tested for detecting females with a standardized verbal IQ of <70 among the study participants. In the group consisting of only FM females, methylation of these sites was significantly correlated with full-scale IQ, verbal IQ, and performance IQ. Several verbal subtest scores showed strong correlation with the methylation of these sites (P = 1.2 × 10−5) after adjustment for multiple measures. CONCLUSIONS The data suggest that hypermethylation of the FMR1 intron 1 sites in blood is predictive of cognitive impairment in FM females, with implications for improved fragile X syndrome diagnostics in young children and screening of the newborn population.


Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1780
Author(s):  
Mark Roth ◽  
Lucienne Ronco ◽  
Diego Cadavid ◽  
Blythe Durbin-Johnson ◽  
Randi J. Hagerman ◽  
...  

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. FXS is an X-linked, neurodevelopmental disorder caused by a CGG trinucleotide repeat expansion in the 5′ untranslated region (UTR) of the Fragile X Mental Retardation gene, FMR1. Greater than 200 CGG repeats results in epigenetic silencing of the gene leading to the deficiency or absence of Fragile X mental retardation protein (FMRP). The loss of FMRP is considered the root cause of FXS. The relationship between neurological function and FMRP expression in peripheral blood mononuclear cells (PBMCs) has not been well established. Assays to detect and measure FMR1 and FMRP have been described; however, none are sufficiently sensitive, precise, or quantitative to properly characterize the relationships between cognitive ability and CGG repeat number, FMR1 mRNA expression, or FMRP expression measured in PBMCs. To address these limitations, two novel immunoassays were developed and optimized, an electro-chemiluminescence immunoassay and a multiparameter flow cytometry assay. Both assays were performed on PMBCs isolated from 27 study participants with FMR1 CGG repeats ranging from normal to full mutation. After correcting for methylation, a significant positive correlation between CGG repeat number and FMR1 mRNA expression levels and a significant negative correlation between FMRP levels and CGG repeat expansion was observed. Importantly, a high positive correlation was observed between intellectual quotient (IQ) and FMRP expression measured in PBMCs.


2010 ◽  
Vol 30 (19) ◽  
pp. 6782-6792 ◽  
Author(s):  
P. Banerjee ◽  
B. P. Schoenfeld ◽  
A. J. Bell ◽  
C. H. Choi ◽  
M. P. Bradley ◽  
...  

Neuron ◽  
2006 ◽  
Vol 51 (4) ◽  
pp. 441-454 ◽  
Author(s):  
Lingfei Hou ◽  
Marcia D. Antion ◽  
Daoying Hu ◽  
Corinne M. Spencer ◽  
Richard Paylor ◽  
...  

2015 ◽  
Vol 30 (11) ◽  
pp. 2686-2692 ◽  
Author(s):  
Ann Schufreider ◽  
Dana B. McQueen ◽  
Sang Mee Lee ◽  
Rachel Allon ◽  
Meike L. Uhler ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dominic J. Vita ◽  
Cole J. Meier ◽  
Kendal Broadie

AbstractGlia engulf and phagocytose neurons during neural circuit developmental remodeling. Disrupting this pruning process contributes to Fragile X syndrome (FXS), a leading cause of intellectual disability and autism spectrum disorder in mammals. Utilizing a Drosophila FXS model central brain circuit, we identify two glial classes responsible for Draper-dependent elimination of developmentally transient PDF-Tri neurons. We find that neuronal Fragile X Mental Retardation Protein (FMRP) drives insulin receptor activation in glia, promotes glial Draper engulfment receptor expression, and negatively regulates membrane-molding ESCRT-III Shrub function during PDF-Tri neuron clearance during neurodevelopment in Drosophila. In this context, we demonstrate genetic interactions between FMRP and insulin receptor signaling, FMRP and Draper, and FMRP and Shrub in PDF-Tri neuron elimination. We show that FMRP is required within neurons, not glia, for glial engulfment, indicating FMRP-dependent neuron-to-glia signaling mediates neuronal clearance. We conclude neuronal FMRP drives glial insulin receptor activation to facilitate Draper- and Shrub-dependent neuronal clearance during neurodevelopment in Drosophila.


Sign in / Sign up

Export Citation Format

Share Document