scholarly journals Design of Microwave-based Brain Tumor Detection Framework with the Development of Sparse and Low-Rank Compressive Sensing Image Reconstruction

2020 ◽  
Vol 11 (5) ◽  
pp. 984
Author(s):  
Hermawan Rahman Sholeh ◽  
Mia Rizkinia ◽  
Basari Basari
Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 385
Author(s):  
Kunhao Zhang ◽  
Yali Qin ◽  
Huan Zheng ◽  
Hongliang Ren ◽  
Yingtian Hu

The use of non-local self-similarity prior between image blocks can improve image reconstruction performance significantly. We propose a compressive sensing image reconstruction algorithm that combines bilateral total variation and nonlocal low-rank regularization to overcome over-smoothing and degradation of edge information which result from the prior reconstructed image. The proposed algorithm makes use of the preservation of image edge information by bilateral total variation operator to enhance the edge details of the reconstructed image. In addition, we use weighted nuclear norm regularization as a low-rank constraint for similar blocks of the image. To solve this convex optimization problem, the Alternating Direction Method of Multipliers (ADMM) is employed to optimize and iterate the algorithm model effectively. Experimental results show that the proposed algorithm can obtain better image reconstruction quality than conventional algorithms with using total variation regularization or considering the nonlocal structure of the image only. At 10% sampling rate, the peak signal-to-noise ratio gain is up to 2.39 dB in noiseless measurements compared with Nonlocal Low-rank Regularization (NLR-CS). Reconstructed image comparison shows that the proposed algorithm retains more high frequency components. In noisy measurements, the proposed algorithm is robust to noise and the reconstructed image retains more detail information.


Author(s):  
V. Deepika ◽  
T. Rajasenbagam

A brain tumor is an uncontrolled growth of abnormal brain tissue that can interfere with normal brain function. Although various methods have been developed for brain tumor classification, tumor detection and multiclass classification remain challenging due to the complex characteristics of the brain tumor. Brain tumor detection and classification are one of the most challenging and time-consuming tasks in the processing of medical images. MRI (Magnetic Resonance Imaging) is a visual imaging technique, which provides a information about the soft tissues of the human body, which helps identify the brain tumor. Proper diagnosis can prevent a patient's health to some extent. This paper presents a review of various detection and classification methods for brain tumor classification using image processing techniques.


Author(s):  
Aaishwarya Sanjay Bajaj ◽  
Usha Chouhan

Background: This paper endeavors to identify an expedient approach for the detection of the brain tumor in MRI images. The detection of tumor is based on i) review of the machine learning approach for the identification of brain tumor and ii) review of a suitable approach for brain tumor detection. Discussion: This review focuses on different imaging techniques such as X-rays, PET, CT- Scan, and MRI. This survey identifies a different approach with better accuracy for tumor detection. This further includes the image processing method. In most applications, machine learning shows better performance than manual segmentation of the brain tumors from MRI images as it is a difficult and time-consuming task. For fast and better computational results, radiology used a different approach with MRI, CT-scan, X-ray, and PET. Furthermore, summarizing the literature, this paper also provides a critical evaluation of the surveyed literature which reveals new facets of research. Conclusion: The problem faced by the researchers during brain tumor detection techniques and machine learning applications for clinical settings have also been discussed.


Sign in / Sign up

Export Citation Format

Share Document