scholarly journals Inheritance of plant height, straw yield and flag leaf area in MBB x Gaviota durum wheat (Triticum durum Desf.) cross

2021 ◽  
Vol 117 (4) ◽  
pp. 1
Author(s):  
Manel SALMI ◽  
Zine El Abidine FELLAHI ◽  
Abdelkader BENBELKACEM ◽  
Amar BENMAHAMMED ◽  
Hamenna BOUZERZOUR

<p class="042abstractstekst">Plant height, straw mass and flag leaf area are recognized by physiologists as morphological markers of drought stress tolerance. Developing varieties intended for arid and semi-arid zones need to select for these traits. Understanding the genetic control of a given trait helps breeder to handle the segregating populations under study in a more efficient and consistent manner by choosing the best breeding method available to realize significant genetic advance. For this purpose, six generations: parents, F1, F2, BC1, BC2, derived from MBB x ‘Gaviota’ durum wheat (<em>Triticum durum </em>Desf.) cross were grown to investigate the nature of gene action involved in the inheritance pattern of the three traits. The results indicated that the six-parameter model fitted the best the data related to the variability present in the generation means of the studied traits. Generation mean analysis indicated that non-allelic interactions were important factors controlling the expression of these characters with complementary type of gene action governing FLA and STW inheritance. High heritability estimates, moderate to high expected responses to selection, significant genetic correlations with grain yield and greater role of non-additive effects in controlling the inheritance of the three studied traits suggested that breeding methods exploiting both fixable and non-fixable components be applied to break unfavorable linkage and to accumulate useful genes in the base population, followed by mono-trait or index based selection in late advanced generations.</p>

2021 ◽  
Vol 923 (1) ◽  
pp. 012083
Author(s):  
M. J. H. Al-Haiti ◽  
M. O. G. Alubaidi

Abstract A field experiment was carried out in the fields of a farmer in the area of (Zakhikha) with mixed sandy soil, loam sand, which is one of the rural areas of western Heet district (about 15 kg) affiliated to Anbar Governorate during the season 2020-2021, to study seven newly derived genotypes from durum wheat, including two cultivars. They are registered, accredited, and commonly cultivated in Iraq, under three different seeding Ratesto select the ones that are suitable for the conditions of Anbar Governorate. The experiment layer was according to the randomized complete block design (RCBD), in the order of split - plots and with three replications. It included seeding Rates(140, 160 and 180 kg.ha−1) main plots. As for the sub plots, they were occupied by the seven genotypes (Latifa, genotype Babel-30, genotype Babel-31, genotype Babel-32, genotype Babel-86, and the two approved cultivars Dor-29 and Dor-85): The genotype (Babylon-32) outperformed the means number of tillers (573.3 m2) and the biological yield (22.94 mcg ha−1). While the genotype (Babylon-86) was superior to the plant height (113.02 cm). As for the variety (Dor). -85) It was superior in Flag leaf area (58.12 cm2) and the number of days from planting to 50% of physiological maturity (164.67 days). The genotyped plants of wheat grown with different seeding Rates showed significant differences among themselves in the characteristics of vegetative growth, where the plants grown at a seeding rate of (180 kg ha−1) recorded the highest means in the trait of plant height (105.20 cm), number of tillers/m2 (596.9 tillers) and biological yield (23.31 mega grams ha−1), while planting plants at seeding rates (140 kg.ha−1) resulted in recording the highest rate of Flag leaf area (53.85 cm2), while planting plants at seeding rates (160 kg.ha−1) recorded the highest Means number of days from planting to 50% and physiological maturity (167.38 days). There was a significant interaction between the genotypes and seeding Rates of the wheat included in the study.


2013 ◽  
Vol 127 (1) ◽  
pp. 159-171 ◽  
Author(s):  
Vanessa De Simone ◽  
Mario Soccio ◽  
Grazia Maria Borrelli ◽  
Donato Pastore ◽  
Daniela Trono

2017 ◽  
Vol 9 (2) ◽  
pp. 122 ◽  
Author(s):  
Sally Chikuta ◽  
Thomas Odong ◽  
Fred Kabi ◽  
Patrick Rubaihayo

Sorghum is an important food and feed source in mixed crop-livestock production systems where its dual usage is a preferred option, especially among the resource poor small-scale farmers. Attempts to improve fodder quality traits in maize have been at the expense of grain traits and vice versa, but other studies demonstrated that it was possible to select for high stem biomass without compromising the improvement of grain yields in sorghum. As a follow up to this effort, this study was undertaken to estimate the combining ability of grain and forage sorghum genotypes and determine heterosis for several traits as a criteria for improving dual purpose sorghum cultivars. Four grain and four forage sorghum cultivars were crossed to generate 23 crosses following the half diallel mating design scheme at Makerere University Agricultural Research institute Kabanyolo (MUARIK) in 2013. The crosses were evaluated at three locations in Uganda during two rainy seasons of 2014. Data were taken and analysed on leaf area, leaf-stem ratio, plant height, seed weight, grain yield, and biomass. Results indicated that the gene action for the traits under observation was controlled by both additive and non additive genetic effects. Majority of the parental lines had significant GCA estimates for all traits except line 20 for grain yield, lines 22 and 34 for plant height, line 35 for leaf-stem ratio, and line 22 for days to flowering. Significant (P ≤ 0.05) SCA estimates were prominent in most of the individual parental combinations for all traits except leaf area and leaf-stem ratio indicating the role of dominance gene action. Bakers ratio and heritability coefficients were > 52% for biomass, flowering duration and plant height indicating that genetic gains can be achieved by conventional breeding for the three traits. Heterosis in grain yield and biomass over both the mid and better parents was shown by more than half of the crosses studied. This study suggested that both inter and intra allelic interactions were involved in the expression of the traits.


2007 ◽  
Vol 20 (1) ◽  
pp. 39-45
Author(s):  
Khaleda Akter ◽  
S. H. Habib ◽  
M. K. Bashar ◽  
A. M. Nurunnabi

Thirty advanced breeding lines of deep-water rice were evaluated during T. Aman season (rainfed ecosystem) with a view to finding out variability and genetic association for grain yield and its component characters. All the tested characters showed significant variation. The highest genetic variability was obtained in filled grains/panicle followed by plant height. Panicles/plant, filled grains/panicle and grain yield had high genetic coefficient of variation and heritability in broad sense coupled with high genetic advance in percentage of mean. Panicle length, panicles/plant, plant height, filled grains/panicle and harvest index showed significant positive association with grain yield. Path coefficient analysis also revealed maximum positive and direct contribution of filled grain to grain yield followed by panicles/plant, 1000-grain weight and flag leaf area. Moreover, plant height had the highest indirect effect on grain yield through filled grains/panicle. Flag leaf area, harvest index and panicle length also had higher positive indirect effect on grain yield through filled grains/panicle.DOI: http://dx.doi.org/10.3329/bjpbg.v20i1.17024


2019 ◽  
Vol 4 (02) ◽  
pp. 135-139
Author(s):  
Ravi Kumar ◽  
Anant Kumar ◽  
Joginder Singh

Genetic variability, heritability, genetic advance and correlation coefficients were studied in 104 genotypes of wheat genotypes for yield and yield contributing traits. Both GCV and PCV were found to be moderate for flag leaf area, biological yield per plant, grain yield per plant and ash content. The days to ear emergence, days to maturity, plant height, harvest index and 1000-grain weight low GCV and PCV values were observed. Number of productive tillers per plant and spike length recorded moderate value of PCV and low value of GCV. High estimate of heritability in narrow sense was recorded for number of productive tillers per plant, biological yield per plant, harvest index and grain yield per plant, while it was moderate for days to ear emergence, days to maturity, plant height, flag leaf area, spike length, grains per spike and low heritability were recorded for 1000-grain weight. High heritability coupled with high genetic advance in per cent of mean was recorded for biological yield per plant and grain yield per plant. Grain yield per plant exhibited highly significant and positive association with 1000-grain weight, harvest index, biological yield per plant, grains per spike, number of productive tillers per plant and days to maturity.


2017 ◽  
Vol 4 (4) ◽  
pp. 529-536
Author(s):  
Deepak Vitrakoti ◽  
Sheetal Aryal ◽  
Santosh Rasaily ◽  
Bishnu Raj Ojha ◽  
Raju Kharel ◽  
...  

Barley, being a tremendous opportunities crop, we are far back regarding study, research and utilization. An experiment was conducted 2014-2015 to evaluate the barley genotypes for their yield attributing traits and correlation and causation. Eleven yield contributing traits viz., days to booting, heading and flowering; peduncle length, spike length, plant height, flag leaf area, flag leaf-1 area, thousand grain weight, biological weight and yield per hectare were recorded. High significant variation among genotypes was found for traits under study. Genotypes SBYT3-13#1115 (1960 kg), 14-SB-NAK-MR#17 (1760 kg) and AM POP#26 (1660 kg) were found to be superior for their per se performance based on grain yield per hectare, yield attributing and other quantitative traits. Thousand grains weight (0.333) had positively highest significant correlation with grain yield per hectare followed by spike length (0.310). Grain yield per hectare showed negative highly significant correlation with days to flowering (-0.796) followed by days to heading (-0.761) and days to booting (-0.663). Peduncle length (0.229), plant height (0.226), biological weight (0.181) and flag leaf area (0.032) were positively correlated with grain yield per hectare while flag leaf-1 area(-0.029) was negatively correlated. Thus, selection for genotypes with higher thousand grain weight and spike length accommodating earlier days to flowering, heading and booting is a prerequisite for attaining improvement in grain yield per hectare.Int J Appl Sci Biotechnol, Vol 4(4): 529-536


2021 ◽  
Vol 13 (1) ◽  
pp. 10891
Author(s):  
Hayati AKMAN

Wheat species and wild relatives offer promising resources for wheat improvement and research in the current period of the genetic narrowing of modern wheat cultivars. The present study was performed to evaluate the morphological and anatomical traits of 20 diverse genotypes including Triticum and Aegilops species with intergeneric and interspecific wheat hybrids, which were compared with modern bread and durum wheat cultivars locally adapted to rainfed and irrigated conditions. The study showed that stomata density and size ranged from 55.3 to 108.6 stomata/mm2 and 401.4 to 1296 µm2, respectively, in the selected genotypes. Moving tetraploid to hexaploid genotypes, increased chromosome numbers yielded lower densities of large stomata in wheat species and hybrids. In this regard, the stomatal patterns of two hexaploid wheat hybrids and a wheat species including ‘Agrotriticum’, ‘Aegilotriticum’, and T. compactum, were of low density and large size stomata compared to T. durum cv. ‘Kunduru 1149’ with high density and small size stomata. Interestingly, the wild progenitor of the bread wheat D genome, Ae. tauschii, had a high density of the smallest stomata among the studied genotypes. The study further indicated that morphological parameters decreased under rainfed conditions compared to those under irrigated conditions, with levels varying among the genotypes. The rainfed flag leaf area and 1000-grain weight varied from 0.9 to 23.7 cm2 and from 7.3 to 61.9 g, respectively under rainfed conditions, while they ranged from 1.2 to 35.7 cm2 and 11.5 to 69.9 g under irrigated conditions. The flag leaf area had a significant and strong association with 1000-grain weight under rainfed (r2= 0.79) and irrigated (r2 = 0.77) conditions. T. turanicum and T. polonicum were characterized by the significantly highest 1000-grain weight in both rainfed and irrigated conditions. This study suggests that these wheat species with high 1000-grain weight might have promising alleles to be transferred into durum wheat to increase grain yield.


2018 ◽  
Vol 10 (1) ◽  
pp. 6-11
Author(s):  
Sandeep Kumar ◽  
Pradeep Kumar ◽  
Vichitra Kumar Arya ◽  
Ravi Kumar ◽  
S. A. Kerkhi

The present study was conducted to estimate the gentic components and regression analysis for grain yield and various morphological traits in bread wheat involving 10 parents and their 45 F1s (half diallel) during 2012- 13 and 2013-14. Significant additive (D) and dominance (H1) variance for the traits indicated that expression of these traits is control by both additive and dominance gene action. Average degree of dominance (H1/D)1/2 were more than unity for the traits (peduncle length, flag leaf area, productive tillers, biological yield, grain yield, harvest index) indicating the preponderance of over dominance gene action. The estimates of h2 were positive and significant for days to ear emergence, peduncle length, productive tillers, biological yield and grain yield indicated dominance of genetic components in F1s. Positive and significant values of F were estimated for days to ear emergence, days to 50% flowering, spike length, flag leaf area and grain yield in F1s indicating the preponderance of dominance and positive genes in the parents involved. The theoretical value (0.25) of (H2/4H1) for all the traits indicated asymmetrical distribution of positive and negative genes. The proportion of dominant and recessive alleles indicated presence of dominant alleles in the parents. The traits showing more than 30% narrow sanse heritability could be rewarding for further improvement in grain yield in bread wheat. Regression analysis indicated that the traits (days to ear emergence, days to 50% flowering, peduncle length, flag leaf area, productive tillers, harvest index, biological yield and grain yield) control by over dominance type of gene action. The parent RAJ 4246 contained maximum dominant genes for days to ear emergence and days to 50% flowering; HD 2733 for spike length and flag leaf area and HD 2824 for productive tillers, biological yield and grain yield used as donors in multiple traits breeding programme to develop high yielding wheat genotypes.


2004 ◽  
Vol 52 (1) ◽  
pp. 63-68 ◽  
Author(s):  
S. N. Sharma ◽  
U. Menon ◽  
R. S. Sain

Combining ability analysis was carried out in the F1 and F2 generations of a 10 × 10 parents half diallel for peduncle length and flag leaf area in spring wheat under three environments. The mean squares for both general combining ability (GCA) and specific combining ability (SCA) were significant for peduncle length in both the generations, indicating the involvement of both additive and non-additive gene actions in the inheritance. However, the high values of GCA variance showed the greater importance of additive gene action in the inheritance of this trait. Flag leaf area was observed to be controlled by non-additive gene action. The environment played a significant role in the expression of both the traits. The GCA × environment interaction exhibited greater sensitivity in all cases than the SCA × environment interaction. The varieties Kharchia 65 and Durgapura 65 emerged as desirable general combiners for peduncle length, whereas Pavon and Moncho had high mean performance for flag leaf area. These parents could be used as donors in future breeding to develop a physiologically efficient wheat genotype with high production. The crosses Moncho × Brochis and Durgapura 65 × Raj 821 were the most desirable specific combinations for flag leaf area and Kharchia 65 × Chiroca for both the traits. Desirable transgressive segregants can be expected from these crosses. Diallel selective mating or bi-parental crossing could be useful for the genetic improvement of these physiological traits.


2020 ◽  
Vol 248 ◽  
pp. 107721 ◽  
Author(s):  
Shan Duan ◽  
Zhangchen Zhao ◽  
Yue Qiao ◽  
Chunge Cui ◽  
Alexey Morgunov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document