scholarly journals Concrete Slabs’ Initial Cracks Assessment using Ground Penetrating Radar

Author(s):  
Abdul Razzak T. Ziboon ◽  
Nisreen S. Mohammed ◽  
Nisreen S. Mohammed ◽  
Anaam G. Hamad

Ground-Penetrating Radar (GPR) is extensively used by a multiple group of service providers that incorporate agronomist, archaeologists, criminologists, engineers, environmental specialists, foresters, geologists, geophysicists, hydrologists, land use managers, and soil scientists. In engineering applications include Non-Destructive Testing (NDT) of structures and pavements and locating buried structures etc. GPR is a relatively new geophysical tool that has become increasingly popular due to its high resolution and the need to better understand near-surface conditions. In this paper GPR is applied to six concrete slabs. Radar measurements were performed using a 1000 MHz RAMAC GPR CU-II. Two concrete slabs weren’t reinforced, two have simple reinforcement, and the last two have artificial gaps in their reinforcement. Tests were taken after applying 40% of the slabs’ failure loads. Experiments resulted that the extent and severity of the fatigue cracking was possible to be monitored. In addition, the technique was assistive in determining the failure caused by loading reflected by radargrams.

2020 ◽  
pp. 1-23
Author(s):  
Marc N. Levine ◽  
Scott W. Hammerstedt ◽  
Amanda Regnier ◽  
Alex E. Badillo

In this article, we present the most significant results of the Monte Albán Geophysical Archaeology Project. Using ground-penetrating radar, gradiometry, and electrical resistance, we carried out a systematic survey of the site's Main Plaza to identify buried prehispanic features that might shed light on Monte Albán's early history. The most important discoveries include three buried structures dating between the Danibaan (500–300 BC) and Nisa phases (100 BC–AD 100). We argue that the largest structure, measuring 18 × 18 m, was probably a temple platform and that all three of the structures were razed and buried by the end of the Nisa phase at the latest. Furthermore, we contend that these events were part of a major renovation and expansion of the site's Main Plaza that occurred during a pivotal period of dramatic sociopolitical transformation in the Zapotec capital.


2021 ◽  
Vol 13 (12) ◽  
pp. 2384
Author(s):  
Roland Filzwieser ◽  
Vujadin Ivanišević ◽  
Geert J. Verhoeven ◽  
Christian Gugl ◽  
Klaus Löcker ◽  
...  

Large parts of the urban layout of the abandoned Roman town of Bassianae (in present-day Serbia) are still discernible on the surface today due to the deliberate and targeted quarrying of the Roman foundations. In 2014, all of the town's intramural (and some extramural) areas were surveyed using aerial photography, ground-penetrating radar, and magnetometry to analyze the site's topography and to map remaining buried structures. The surveys showed a strong agreement between the digital surface model derived from the aerial photographs and the geophysical prospection data. However, many structures could only be detected by one method, underlining the benefits of a complementary archaeological prospection approach using multiple methods. This article presents the results of the extensive surveys and their comprehensive integrative interpretation, discussing Bassianae's ground plan and urban infrastructure. Starting with an overview of this Roman town's research history, we present the details of the triple prospection approach, followed by the processing, integrative analysis, and interpretation of the acquired data sets. Finally, this newly gained information is contrasted with a plan of Roman Bassianae compiled in 1935.


2021 ◽  
pp. 1-53
Author(s):  
Lei Fu ◽  
Lanbo Liu

Ground-penetrating radar (GPR) is a geophysical technique widely used in near-surface non-invasive detecting. It has the ability to obtaining a high-resolution internal structure of living trunks. Full wave inversion (FWI) has been widely used to reconstruct the dielectric constant and conductivity distribution for cross-well application. However, in some cases, the amplitude information is not reliable due to the antenna coupling, radiation pattern and other effects. We present a multiscale phase inversion (MPI) method, which largely matches the phase information by normalizing the magnitude spectrum; in addition, a natural multiscale approach by integrating the input data with different times is implemented to partly mitigate the local minimal problem. Two synthetic GPR datasets generated from a healthy oak tree trunk and from a decayed trunk are tested by MPI and FWI. Field GPR dataset consisting of 30 common shot GPR data are acquired on a standing white oak tree (Quercus alba); the MPI and FWI methods are used to reconstruct the dielectric constant distribution of the tree cross-section. Results indicate that MPI has more tolerance to the starting model, noise level and source wavelet. It can provide a more accurate image of the dielectric constant distribution compared to the conventional FWI.


2021 ◽  
Vol 13 (18) ◽  
pp. 3696
Author(s):  
Yuri Álvarez López ◽  
María García-Fernández

Ground Penetrating Radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in Non-Destructive Testing (NDT), since it is able to detect both metallic and nonmetallic targets [...]


2020 ◽  
Author(s):  
Livia Lantini ◽  
Fabio Tosti ◽  
Iraklis Giannakis ◽  
Kevin Jagadissen Munisami ◽  
Dale Mortimer ◽  
...  

<p>Street trees are widely recognised to be an essential asset for the urban environment, as they bring several environmental, social and economic benefits [1]. However, the conflicting coexistence of tree root systems with the built environment, and especially with road infrastructures, is often cause of extensive damage, such as the uplifting and cracking of sidewalks and curbs, which could seriously compromise the safety of pedestrians, cyclists and drivers.</p><p>In this context, Ground Penetrating Radar (GPR) has long been proven to be an effective non-destructive testing (NDT) method for the evaluation and monitoring of road pavements. The effectiveness of this tool lies not only in its ease of use and cost-effectiveness, but also in the proven reliability of the results provided. Besides, recent studies have explored the capability of GPR in detecting and mapping tree roots [2]. Algorithms for the reconstruction of the tree root systems have been developed, and the spatial variations of root mass density have been also investigated [3].</p><p>The aim of this study is, therefore, to investigate the GPR potential in mapping the architecture of root systems in street trees. In particular, this research aims to improve upon the existing methods for detection of roots, focusing on the identification of the road pavement layers. In this way, different advanced signal processing techniques can be applied at specific sections, in order to remove reflections from the pavement layers without affecting root detection. This allows, therefore, to reduce false alarms when investigating trees with root systems developing underneath road pavements.</p><p>In this regard, data from trees of different species have been acquired and processed, using different antenna systems and survey methodologies, in an effort to investigate the impact of these parameters on the GPR overall performance.</p><p> </p><p><strong>Acknowledgements</strong></p><p>The authors would like to express their sincere thanks and gratitude to the following trusts, charities, organisations and individuals for their generosity in supporting this project: Lord Faringdon Charitable Trust, The Schroder Foundation, Cazenove Charitable Trust, Ernest Cook Trust, Sir Henry Keswick, Ian Bond, P. F. Charitable Trust, Prospect Investment Management Limited, The Adrian Swire Charitable Trust, The John Swire 1989 Charitable Trust, The Sackler Trust, The Tanlaw Foundation, and The Wyfold Charitable Trust. This paper is dedicated to the memory of our colleague and friend Jonathan West, one of the original supporters of this research project.</p><p> </p><p><strong>References</strong></p><p>[1] J. Mullaney, T. Lucke, S. J. Trueman, 2015. “A review of benefits and challenges in growing street trees in paved urban environments,” Landscape and Urban Planning, 134, 157-166.</p><p>[2] A. M. Alani, L. Lantini, 2019. “Recent advances in tree root mapping and assessment using non-destructive testing methods: a focus on ground penetrating radar,” Surveys in Geophysics, 1-42.</p><p>[3] L. Lantini, F. Tosti, Giannakis, I., Egyir, D., A. Benedetto, A. M. Alani, 2019. “A Novel Processing Framework for Tree Root Mapping and Density Estimation using Ground Penetrating Radar,” In 10th International Workshop on Advanced Ground Penetrating Radar, EAGE.</p>


Author(s):  
Kevin Gerlitz ◽  
Michael D. Knoll ◽  
Guy M. Cross ◽  
Robert D. Luzitano ◽  
Rosemary Knight

Sign in / Sign up

Export Citation Format

Share Document