scholarly journals Review of Recent Results Using Computational Fluid Dynamics Simulations in Patients Receiving Mechanical Assist Devices for End-Stage Heart Failure

2014 ◽  
Vol 10 (3) ◽  
pp. 185-189 ◽  
Author(s):  
Mina Berty Farag ◽  
Christof Karmonik ◽  
Fabian Rengier ◽  
Matthias Loebe ◽  
Matthias Karck ◽  
...  
Author(s):  
J. Ryan Stanfield ◽  
Richard K. Wampler ◽  
Jingchun Wu ◽  
James Stewart ◽  
Trevor A. Snyder ◽  
...  

Ventricular assist devices (VADs) have become an accepted method of treating end-stage heart failure over the last few decades. In recent years, the use of rotary blood pumps (RBPs) as continuous flow VADs has surged ahead, and virtually eliminated the use of pulsatile-flow or volume-displacement pumps for implantable, chronic mechanical circulatory support (MCS). As the use of RBPs has become commonplace for the treatment of end-stage heart failure, the need for an implantable right-side MCS device for adults [1] and implantable MCS for the pediatric population has increased. Development of an implantable device specific to these populations includes unique challenges of anatomic placement and fixation. Computational Fluid Dynamics (CFD) is the use of numerical methods and algorithms to solve and analyze problems involving fluid flow. CFD has become a standard tool when designing RBPs, as it can calculate pressure-flow characteristics for a given rotary impeller speed. Additionally, through calculation of shear forces, CFD can also predict hemocompatibility by means of constitutive equations derived from empirical data. Particle image velocimetry (PIV), also known as flow visualization, is an optical measurement technique used to obtain velocity in fluids, which can be employed experimentally to verify CFD-based predictions of flow field. PIV also permits more rapid investigation of the RBP operativing range and transient conditions than can be achieved with CFD due to computational requirements. We have developed a RBP platform for chronic use with CFD to optimize hemodynamic performance. The miniaturized device includes unique inlet geometry with a rotating impeller and a vaned-diffuser in a 7mm axial hydraulic diameter. The design scheme separates the bearing and motor region from the primary flow path to further improve hemocompatibility and reduce the pump size without compromising the hydraulic capacity. Here we report CFD and PIV results of our device geometry optimized for right-sided MCS.


2021 ◽  
Vol 24 (1) ◽  
Author(s):  
T. van Druenen ◽  
B. Blocken

AbstractSome teams aiming for victory in a mountain stage in cycling take control in the uphill sections of the stage. While drafting, the team imposes a high speed at the front of the peloton defending their team leader from opponent’s attacks. Drafting is a well-known strategy on flat or descending sections and has been studied before in this context. However, there are no systematic and extensive studies in the scientific literature on the aerodynamic effect of uphill drafting. Some studies even suggested that for gradients above 7.2% the speeds drop to 17 km/h and the air resistance can be neglected. In this paper, uphill drafting is analyzed and quantified by means of drag reductions and power reductions obtained by computational fluid dynamics simulations validated with wind tunnel measurements. It is shown that even for gradients above 7.2%, drafting can yield substantial benefits. Drafting allows cyclists to save over 7% of power on a slope of 7.5% at a speed of 6 m/s. At a speed of 8 m/s, this reduction can exceed 16%. Sensitivity analyses indicate that significant power savings can be achieved, also with varying bicycle, cyclist, road and environmental characteristics.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2041
Author(s):  
Eva C. Silva ◽  
Álvaro M. Sampaio ◽  
António J. Pontes

This study shows the performance of heat sinks (HS) with different designs under forced convection, varying geometric and boundary parameters, via computational fluid dynamics simulations. Initially, a complete and detailed analysis of the thermal performance of various conventional HS designs was taken. Afterwards, HS designs were modified following some additive manufacturing approaches. The HS performance was compared by measuring their temperatures and pressure drop after 15 s. Smaller diameters/thicknesses and larger fins/pins spacing provided better results. For fins HS, the use of radial fins, with an inverted trapezoidal shape and with larger holes was advantageous. Regarding pins HS, the best option contemplated circular pins in combination with frontal holes in their structure. Additionally, lattice HS, only possible to be produced by additive manufacturing, was also studied. Lower temperatures were obtained with a hexagon unit cell. Lastly, a comparison between the best HS in each category showed a lower thermal resistance for lattice HS. Despite the increase of at least 38% in pressure drop, a consequence of its frontal area, the temperature was 26% and 56% lower when compared to conventional pins and fins HS, respectively, and 9% and 28% lower when compared to the best pins and best fins of this study.


Sign in / Sign up

Export Citation Format

Share Document