scholarly journals Mathematic simulation of cutting unloading from the bunker

2019 ◽  
Vol 10 (7) ◽  
pp. 758 ◽  
Author(s):  
Serhii Yermakov ◽  
Taras Hutsol ◽  
Oleh Ovcharuk ◽  
Iryna Kolosiuk

The peculiarities of cutting movement at unloading them from the hopper are described. The analysis of the scientific researches on bulk materials movement and bridging is given. To develop the mathematical model of cutting unloading the layer should be described as a pseudoliquid, that consists of discrete components (cuttings) and gaseous medium (air). The Navier-Stokes equation can be applied to the process of cutting unloading and velocity field. The equation of pseudoliquid motion is a nonlinear integral and differential equation. The initial and boundary conditions for speed of cutting movement are identified. As a result of research has been theoretically obtained a formula, that evaluates the rate of planting material unloading, the adequacy of which has already been partially tested in experimental experiments carried out by the authors on the way to creating an automatic planting machine.

2019 ◽  
Vol 294 ◽  
pp. 01009 ◽  
Author(s):  
Nataliya Chernetskaya-Beletskaya ◽  
Andriy Rogovyi ◽  
Igor Baranov ◽  
Alexander Krut ◽  
Maria Miroshnikova ◽  
...  

The analysis of further prospects for increasing the efficiency of transportation of coal-water fuel in hydro-transport systems of industrial enterprises is carried out. The mathematical model of the spatial three-dimensional flow of coal-water fuel was developed on the basis of SST turbulence model based on the solution of Navier-Stokes equation. As a result of the calculation, the values of pressure loss, flow rate and velocity distribution over the cross section of the pipeline in the straight section and in the turn were determined, which allowed determining the energy consumption during coal-water fuel transportation in the industrial hydro-transport system. The performed studies allowed us to refine the mathematical model of water-coal suspension flow and, thus, improve the patterns of influence of hydro-transportation scheme and parameters of coal-water fuel on energy consumption for its supply to enterprise consumers. By means of mathematical model of non-Newtonian fluids flow, the patterns of influence of hydro-transport system parameters and transportation modes of coal-water fuel on its energy indicators in industrial hydro-transport systems are determined. The obtained results are related to reduction of energy consumption, optimization of enterprise transport network configuration and increase of efficiency of coal-water fuel transportation to enterprise energy facilities.


2014 ◽  
Vol 986-987 ◽  
pp. 1418-1421
Author(s):  
Jun Shan Li

In this paper, we propose a meshless method for solving the mathematical model concerning the leakage problem when the pressure is tested in the gas pipeline. The method of radial basis function (RBF) can be used for solving partial differential equation by writing the solution in the form of linear combination of radius basis functions, that is, when integrating the definite conditions, one can find the combination coefficients and then the numerical solution. The leak problem is a kind of inverse problem that is focused by many engineers or mathematical researchers. The strength of the leak can find easily by the additional conditions and the numerical solutions.


2018 ◽  
Vol 13 (5) ◽  
pp. 43 ◽  
Author(s):  
S. Boujena ◽  
O. Kafi ◽  
A. Sequeira

The recruitment of leukocytes and subsequent rolling, activation, adhesion and transmigration are essential stages of an inflammatory response. Chronic inflammation may entail atherosclerosis, one of the most devastating cardiovascular diseases. Understanding this mechanism is of crucial importance in immunology and in the development of anti-inflammatory drugs. Micropipette aspiration experiments show that leukocytes behave as viscoelastic drops during suction. The flow of non-Newtonian viscoelastic fluids can be described by differential, integral and rate-type constitutive equations. In this study, the rate-type Oldroyd-B model is used to capture the viscoelasticity of the leukocyte which is considered as a drop. Our main goal is to analyze a mathematical model describing the deformation and flow of an individual leukocyte in a microchannel flow. In this model we consider a coupled problem between a simplified Oldroyd-B system and a transport equation which describes the density considered as non constant in the Navier–Stokes equations. First we present the mathematical model and we prove the existence of solution, then we describe its numerical approximation using the level set method. Through the numerical simulations we analyze the hemodynamic effects of three inlet velocity values. We note that the hydrodynamic forces pushing the cell become higher with increasing inlet velocities.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaobing Chen ◽  
Jian Zhao ◽  
Li Chen

In this study, physical experiments and numerical simulations are combined to provide a detailed understanding of flow dynamics in fracture network. Hydraulic parameters such as pressure head, velocity field, Reynolds number on certain monitoring cross points, and total flux rate are examined under various clogging conditions. Applying the COMSOL Multiphysics code to solve the Navier-Stokes equation instead of Reynolds equation and using the measured data to validate the model, the fluid flow in the horizontal 2D cross-sections of the fracture network was simulated. Results show that local clogging leads to a significant reshaping of the flow velocity field and a reduction of the transport capacity of the entire system. The flow rate distribution is highly influenced by the fractures connected to the dominant flow channels, although local disturbances in velocity field are unlikely to spread over the whole network. Also, modeling results indicate that water flow in a fracture network, compared with that in a single fracture, is likely to transit into turbulence earlier under the same hydraulic gradient due to the influence of fracture intersections.


2016 ◽  
Vol 2016 ◽  
pp. 1-5
Author(s):  
Asai Asaithambi

The Blasius problem is one of the well-known problems in fluid mechanics in the study of boundary layers. It is described by a third-order ordinary differential equation derived from the Navier-Stokes equation by a similarity transformation. Crocco and Wang independently transformed this third-order problem further into a second-order differential equation. Classical series solutions and their Padé approximants have been computed. These solutions however require extensive algebraic manipulations and significant computational effort. In this paper, we present a computational approach using algorithmic differentiation to obtain these series solutions. Our work produces results superior to those reported previously. Additionally, using increased precision in our calculations, we have been able to extend the usefulness of the method beyond limits where previous methods have failed.


2019 ◽  
Vol 98 (3) ◽  
pp. 1795-1806 ◽  
Author(s):  
Sergii Skurativskyi ◽  
Grzegorz Kudra ◽  
Krzysztof Witkowski ◽  
Jan Awrejcewicz

Abstract The paper is devoted to the study of harmonically forced impacting oscillator. The physical model for oscillator is a cart on a guide connected to the support with springs and excited by the stepper motor. The support also is provided with limiter of motion. The mathematical model for this system is defined with the second-order piecewise smooth differential equation. Model’s nonlinearity is connected with the incorporation of dry friction and generalized Hertz contact law. Analyzing the classical Poincare sections and inter-impact sequences obtained experimentally and numerically, the bifurcations and statistical properties of periodic, multi-periodic, and chaotic regimes were examined. The development of impact-adding regime as a new nonlinear phenomenon when the forcing frequency varies was observed.


2013 ◽  
Vol 734-737 ◽  
pp. 1276-1279
Author(s):  
Jing Guang Zhu

In order to improve the pump efficiency of pumping wells, by means of the basic formula of pump efficiency, the mathematical model and boundary conditions of dynamic control chart is obtained, and the pump efficiency of pumping wells is drawn. Analysis shown that the pump efficiency is sensitive to the water content and pump leak rate. The higher the water content is, the higher pump efficiency is. The pump efficiency will be reduced with the increasing of pump leak rate. The dynamic control chart of class II block of A oilfield is given in the paper. After taking the measures, the pump efficiency of pumping wells is obviously improved. The dynamic control chart drawn by this method can provide a scientific basis for improving the pump efficiency of pumping wells in oilfield.


Author(s):  
Joel D. Avrin

We obtain global existence and regularity of strong solutions to the incompressible Navier–Stokes equations for a variety of boundary conditions in such a way that the initial and forcing data can be large in the high-frequency eigenspaces of the Stokes operator. We do not require that the domain be thin as in previous analyses. But in the case of thin domains (and zero Dirichlet boundary conditions) our results represent a further improvement and refinement of previous results obtained.


2014 ◽  
Vol 15 (01) ◽  
pp. 1450012 ◽  
Author(s):  
Ana Bela Cruzeiro ◽  
Iván Torrecilla

We prove weak existence of Euler equation (or Navier–Stokes equation) perturbed by a multiplicative noise on bounded domains of ℝ2 with Dirichlet boundary conditions and with periodic boundary conditions. Solutions are H1 regular. The equations are of transport type.


Sign in / Sign up

Export Citation Format

Share Document