scholarly journals Concordance between 13 C: 12 C ratio technique respect to indirect calorimetry to estimate carbohydrate and Fat oxidation rates by means stoichiometric equations during exercise. A reliability and agreement study

2019 ◽  
Vol 7 (8) ◽  
pp. e14053
Author(s):  
Carlos González‐Haro
1992 ◽  
Vol 263 (1) ◽  
pp. E64-E71 ◽  
Author(s):  
J. A. Romijn ◽  
E. F. Coyle ◽  
J. Hibbert ◽  
R. R. Wolfe

A new stable isotope method for the determination of substrate oxidation rates in vivo is described and compared with indirect calorimetry at rest and during high-intensity exercise (30 min at 80-85% maximal O2 uptake capacity) in six well-trained cyclists. This method uses the absolute ratios of 13C/12C in expired air, endogenous glucose, fat, and protein in addition to O2 consumption and is independent of CO2 production (VCO2). Carbohydrate and fat oxidation rates at rest, calculated by both methods, were not significantly different. During exercise the breath 13C/12C ratio increased and reached a steady state after 15-20 min. Carbohydrate oxidation rates during exercise were 39.4 +/- 5.2 and 41.7 +/- 5.7 mg.kg-1.min-1 [not significant (NS)], and fat oxidation rates were 7.3 +/- 1.3 and 6.9 +/- 1.2 mg.kg-1.min-1 (NS), using indirect calorimetry, and the breath ratio method, respectively. We conclude that the breath 13C/12C ratio method can be used to calculate substrate oxidation under different conditions, such as the basal state and exercise. In addition, the results obtained by this new method support the validity of the underlying assumption that indirect calorimetry regards VCO2 as a reflection of tissue CO2 production, during exercise in trained subjects, even up to 80-85% maximal O2 uptake.


2020 ◽  
Vol 16 (5) ◽  
pp. 371-376
Author(s):  
B. Taati ◽  
H. Rohani

The present study aimed to investigate the potential effect of different aerobic fitness levels on substrate oxidation in trained taekwondo athletes. 57 male athletes (age 21.10±7.79 years; VO2max 50.67±6.67 ml/kg/min) with regular weekly taekwondo training and training experience of at least three years completed a graded exercise test to exhaustion on a treadmill. Maximal fat oxidation (MFO), the exercise intensity related to MFO (Fatmax), and carbohydrate (CHO) oxidation rate were measured using indirect calorimetry methods. The athletes then were divided into a low (<50 ml/kg/min, n=18) and high (>50 ml/kg/min, n=39) VO2max group. The average MFO was higher in the high VO2max group than in the low VO2max group (0.46±0.19 vs 0.28±0.11 g/min; P<0.001). Although Fatmax tended toward higher values in the high VO2max group, no difference was observed between the groups (49.15±15.22 vs 42.42±12.37% of VO2max; P=0.18). It was also shown that the high VO2max group had a lower CHO oxidation rate and a higher fat oxidation rate at given exercise intensities. In conclusion, it seems that MFO and substrate oxidation rates in taekwondo athletes can be influenced by aerobic fitness level such that the athletes with higher VO2max appeared to use more fat as a fuel source for energy supply during a given exercise.


2004 ◽  
Vol 91 (2) ◽  
pp. 245-252 ◽  
Author(s):  
M. J. Soares ◽  
S. J. Cummings ◽  
J. C. L. Mamo ◽  
M. Kenrick ◽  
L. S. Piers

The influence of the source of dietary fat on postprandial thermogenesis and substrate oxidation rates, was examined in twelve postmenopausal women aged 57–73 years, with BMI 21·9–38·3 kg/m2. A single blind, randomised, paired comparison of two high-fat, isoenergetic, mixed test meals was conducted. The major source of fat was either cream (CREAM) or extra virgin olive oil (EVOO). RMR, diet-induced thermogenesis (DIT) and substrate oxidation rates over 5 h were measured by indirect calorimetry. There were no differences in body weight, RMR, fasting carbohydrate or fat oxidation rates between the two occasions. DIT (EVOO 97 (sd 46) v. CREAM 76 (sd 69) kJ/5 h and EVOO 5·2 (sd 2·5) v. CREAM 4·1 (sd 3·7)% energy) did not differ between the two test meals. The postprandial increase in carbohydrate oxidation rates, relative to their respective fasting values (ΔCOX), was significantly lower following the EVOO meal (EVOO 10·6 (sd 8·3) v. CREAM 17·5 (sd 10) g/5 h; paired t test, P=0·023), while postprandial fat oxidation rates (ΔFOX) were significantly higher (EVOO 0·0 (sd 4·4) v. CREAM -3·6 (sd 4·0) g/5 h; P=0·028). In the eight obese subjects, however, DIT was significantly higher following the EVOO meal (EVOO 5·1 (sd 2·0) v. CREAM 2·5 (sd 2·9) %; P=0·01). This was accompanied by a significantly lower ΔCOX (EVOO 10·9 (sd 9·9) v. CREAM 17·3 (sd 10·5) g/5 h; P=0·03) and significantly higher ΔFOX (EVOO 0·11 (sd 4·4) v. CREAM −4·1 (sd 4·5) g/5 h, P=0·034). The present study showed that olive oil significantly promoted postprandial fat oxidation and stimulated DIT in abdominally obese postmenopausal women.


2018 ◽  
Vol 50 (5S) ◽  
pp. 824
Author(s):  
Jeff Cournoyer ◽  
Graham Salmun

PLoS ONE ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. e97930 ◽  
Author(s):  
Ilaria Croci ◽  
Fabio Borrani ◽  
Nuala Byrne ◽  
Rachel Wood ◽  
Ingrid Hickman ◽  
...  

1983 ◽  
Vol 55 (2) ◽  
pp. 628-634 ◽  
Author(s):  
K. N. Frayn

This paper reviews the assumptions involved in calculating rates of carbohydrate and fat oxidation from measurements of O2 consumption, CO2 production, and urinary nitrogen excretion. It is shown that erroneous results are obtained in the presence of metabolic processes such as lipogenesis and gluconeogenesis. The apparent rates calculated under these conditions can, however, be interpreted as net rates of “utilization.” Thus the apparent rate of carbohydrate oxidation is the sum of the rates of utilization for oxidation and for lipogenesis minus the rate at which carbohydrate is formed from amino acids. The apparent rate of fat oxidation is the difference between the rates of oxidation and synthesis from carbohydrate, so that the apparently negative rates encountered in patients infused with glucose do quantitatively represent net rates of synthesis. Other processes such as synthesis of ketone bodies or lactate at rates greater than their utilization can also disturb the calculations, but the magnitude of the effect can be estimated from appropriate measurements. Methods of correcting the observed gaseous exchange in these circumstances are given.


2014 ◽  
Vol 116 (1) ◽  
pp. 76-82 ◽  
Author(s):  
L. Chu ◽  
M. C. Riddell ◽  
J. E. Schneiderman ◽  
B. W. McCrindle ◽  
J. K. Hamilton

Excess weight is often associated with insulin resistance (IR) and may disrupt fat oxidation during exercise. This effect is further modified by puberty. While studies have shown that maximal fat oxidation rates (FOR) during exercise decrease with puberty in normal-weight (NW) and overweight (OW) boys, the effect of puberty in NW and OW girls is unclear. Thirty-three NW and OW girls ages 8–18 yr old completed a peak aerobic capacity test on a cycle ergometer. FOR were calculated during progressive submaximal exercise. Body composition and Tanner stage were determined. For each participant, a best-fit polynomial curve was constructed using fat oxidation vs. exercise intensity to estimate max FOR. In a subset of the girls, IR derived from an oral glucose tolerance test ( n = 20), and leptin and adiponectin levels ( n = 11) were assessed in relation to FOR. NW pre-early pubertal girls had higher max FOR [6.9 ± 1.4 mg·kg fat free mass (FFM)−1·min−1] than NW mid-late pubertal girls (2.2 ± 0.9 mg·kg FFM−1·min−1) ( P = 0.002), OW pre-early pubertal girls (3.8 ± 2.1 mg·kg FFM−1·min−1), and OW mid-late pubertal girls (3.3 ± 0.9 mg·kg FFM−1·min−1) ( P < 0.05). Bivariable analyses showed positive associations between FOR with homeostatic model assessment of IR ( P = 0.001), leptin ( P < 0.001), and leptin-to-adiponectin ratio ( P = 0.001), independent of percent body fat. Max FOR decreased in NW girls during mid-late puberty; however, this decrease associated with puberty was blunted in OW girls due to lower FOR in pre-early puberty. The presence of IR due to obesity potentially masks the effect of puberty on FOR during exercise in girls.


2007 ◽  
Vol 32 (2) ◽  
pp. 249-256 ◽  
Author(s):  
Tim Meyer ◽  
Nina Gäßler ◽  
Wilfried Kindermann

Several earlier studies were aimed at determining an exercise intensity that elicits maximal fat oxidation (Fatmax). However, these studies employed few different intensities or used exercise periods of too short a duration. All investigators described intensity with reference to maximal ergometric values, which might lead to metabolically inhomogeneous workloads between individuals. The aim of this study was to determine Fatmax by overcoming these methodological shortcomings of earlier investigations. Ten healthy recreational athletes (29 ± 5 y; 75 ± 6 kg; 1.81 ± 0.04 m) conducted an initial incremental cycling test to determine VO2 peak (59.2 ± 6.1 mL·min–1·kg–1) and individual anaerobic threshold (IAT; 221 ± 476 W). Within 4 weeks, 5 constant-load tests of 1 h duration were carried out at 55%, 65%, 75%, 85%, and 95% IAT. During all tests indirect calorimetry (MetaMax I, Cortex, Leipzig, Germany) served to quantify fat oxidation. Capillary blood sampling for lactate measurements was conducted every 15 min. All subjects remained in a lactate steady state during the constant load tests, which minimized influences from excess CO2. There was no difference between the 5 intensities for the percentage of energy from fat metabolism (p = 0.12). Additionally, the intensities led to similar absolute amounts of oxidized fat (p = 0.34). However, there was a significant increase in fat metabolism with increasing exercise duration (p = 0.04). It is impossible to define one theoretical optimal intensity for fat oxidation that is true in all individuals. It is thus mandatory to perform an individual assessment with indirect calorimetry. Intra-individual day-to-day variation might render the use of several tests of long duration less applicable than incremental testing with stages of sufficient duration.


Sign in / Sign up

Export Citation Format

Share Document