Primary production estimation of Çankırı province’s rangelands using light use efficiency (LUE) model with satellite data and agrometshell module

2016 ◽  
Vol 22 (4) ◽  
pp. 555-565
Author(s):  
ÜNAL Ediz; BAYRAMİN
2018 ◽  
Vol 10 (9) ◽  
pp. 1346 ◽  
Author(s):  
Joanna Joiner ◽  
Yasuko Yoshida ◽  
Yao Zhang ◽  
Gregory Duveiller ◽  
Martin Jung ◽  
...  

We estimate global terrestrial gross primary production (GPP) based on models that use satellite data within a simplified light-use efficiency framework that does not rely upon other meteorological inputs. Satellite-based geometry-adjusted reflectances are from the MODerate-resolution Imaging Spectroradiometer (MODIS) and provide information about vegetation structure and chlorophyll content at both high temporal (daily to monthly) and spatial (∼1 km) resolution. We use satellite-derived solar-induced fluorescence (SIF) to identify regions of high productivity crops and also evaluate the use of downscaled SIF to estimate GPP. We calibrate a set of our satellite-based models with GPP estimates from a subset of distributed eddy covariance flux towers (FLUXNET 2015). The results of the trained models are evaluated using an independent subset of FLUXNET 2015 GPP data. We show that variations in light-use efficiency (LUE) with incident PAR are important and can be easily incorporated into the models. Unlike many LUE-based models, our satellite-based GPP estimates do not use an explicit parameterization of LUE that reduces its value from the potential maximum under limiting conditions such as temperature and water stress. Even without the parameterized downward regulation, our simplified models are shown to perform as well as or better than state-of-the-art satellite data-driven products that incorporate such parameterizations. A significant fraction of both spatial and temporal variability in GPP across plant functional types can be accounted for using our satellite-based models. Our results provide an annual GPP value of ∼140 Pg C year - 1 for 2007 that is within the range of a compilation of observation-based, model, and hybrid results, but is higher than some previous satellite observation-based estimates.


2019 ◽  
Author(s):  
Benjamin D. Stocker ◽  
Han Wang ◽  
Nicholas G. Smith ◽  
Sandy P. Harrison ◽  
Trevor F. Keenan ◽  
...  

Abstract. Terrestrial photosynthesis is the basis for vegetation growth and drives the land carbon cycle. Accurately simulating gross primary production (GPP, ecosystem-level apparent photosynthesis) is key for satellite monitoring and Earth System Model predictions under climate change. While robust models exist for describing leaf-level photosynthesis, predictions diverge due to uncertain photosynthetic traits and parameters which vary on multiple spatial and temporal scales. Here, we describe and evaluate a gross primary production (GPP, photosynthesis per unit ground area) model, the P-model, that combines the Farquhar-von Caemmerer-Berry model for C3 photosynthesis with an optimality principle for the carbon assimilation-transpiration trade-off, and predicts a multi-day average light use efficiency (LUE) for any climate and C3 vegetation type. The model is forced here with satellite data for the fraction of absorbed photosynthetically active radiation and site-specific meteorological data and is evaluated against GPP estimates from a globally distributed network of ecosystem flux measurements. Although the P-model requires relatively few inputs and prescribed parameters, the R2 for predicted versus observed GPP based on the full model setup is 0.75 (8-day mean, 131 sites) – better than some state-of-the-art satellite data-driven light use efficiency models. The R2 is reduced to 0.69 when not accounting for the reduction in quantum yield at low temperatures and effects of low soil moisture on LUE. The R2 for the P-model-predicted LUE is 0.37 (means by site) and 0.53 (means by vegetation type). The P-model provides a simple but powerful method for predicting – rather than prescribing – light use efficiency and simulating terrestrial photosythesis across a wide range of conditions. The model is available as an R package (rpmodel).


2014 ◽  
Vol 11 (2) ◽  
pp. 3465-3488
Author(s):  
T. Chen ◽  
G. R. van der Werf ◽  
N. Gobron ◽  
E. J. Moors ◽  
A. J. Dolman

Abstract. Croplands cover about 12% of the ice-free terrestrial land surface. Compared with natural ecosystems, croplands have distinct characteristics due to anthropogenic influences. Their global gross primary production (GPP) is not well constrained and estimates vary between 8.2 and 14.2 Pg C yr−1. We quantified global cropland GPP using a light use efficiency (LUE) model, employing satellite observations and survey data of crop types and distribution. A novel step in our analysis was to assign a maximum light use efficiency estimate (ϵ*GPP) to each of the 26 different crop types, instead of taking a uniform value as done in the past. These ϵ*GPP values were calculated based on flux tower CO2 exchange measurements and a literature survey of field studies, and ranged from 1.20 g CMJ−1 to 2.96 g CMJ−1. Global cropland GPP was estimated to be 11.05 Pg C yr−1 in the year 2000. Maize contributed most to this (1.55 Pg C yr−1), and the continent of Asia contributed most with 38.9% of global cropland GPP. In the continental United States, annual cropland GPP (1.28 Pg C yr−1) was close to values reported previously (1.24 Pg C yr−1) constrained by harvest records, but our estimates of ϵ*GPP values were much higher. Our results are sensitive to satellite information and survey data on crop type and extent, but provide a consistent and data-driven approach to generate a look-up table of ϵ*GPP for the 26 crop types for potential use in other vegetation models.


Sign in / Sign up

Export Citation Format

Share Document