Simultaneous stiffness and position control of the pneumatic artificial muscle actuation system

2013 ◽  
Vol 7 (4) ◽  
pp. 271
Author(s):  
Tad A. Driver ◽  
Xiangrong Shen
2014 ◽  
Vol 23 (9) ◽  
pp. 095014 ◽  
Author(s):  
Benjamin K S Woods ◽  
Curt S Kothera ◽  
Gang Wang ◽  
Norman M Wereley

Author(s):  
Garrett Waycaster ◽  
Sai-Kit Wu ◽  
Tad Driver ◽  
Xiangrong Shen

This paper describes the design and control of a compact and flexible pneumatic artificial muscle (PAM) actuation system for bio-robotic systems. The entire paper is divided into two parts, with the first part covering the mechanism design and the second part covering the corresponding controller design. This novel system presented in this part incorporates two new features, including a variable-radius pulley based PAM actuation mechanism, and a spring-return mechanism to replace the PAM in the “weak” direction. With the pulley radius as a function of the joint angle, this new feature enables the designer to freely modulate the shape of the torque curve, and thus achieves a significantly higher flexibility than the traditional configuration. The other new feature, the spring-return mechanism, is inspired by the fact that a large number of bio-robotic systems require a significantly larger torque in one direction than the other.


2013 ◽  
Vol 308 ◽  
pp. 39-44 ◽  
Author(s):  
Mária Tóthová ◽  
Ján Piteľ ◽  
Jana Boržíková

The paper describes operating modes of the PAM based actuator consisting of two pneumatic artificial muscles (PAMs) in antagonistic connection. The artificial muscles are acting against themselves and resultant position of the actuator is given by equilibrium of their forces according to different pressures in muscles. The main requirement for operation of such pneumatic actuator is uniform movement and accurate arm position control according to input desired variable. There are described in paper operation characteristics of the pneumatic artificial muscle in variable pressure and then operation characteristics of the pneumatic artificial muscle actuator consisting of two muscles in antagonistic connection.


2010 ◽  
Vol 5 (1-2) ◽  
pp. 249-253
Author(s):  
János Gyeviki ◽  
József Sárosi ◽  
Antal Véha ◽  
Péter Toman

As an important driver element, the pneumatic artificial muscle (PAM) is widely used in industrial applications for many automation purposes thanks to their variety of advantages. The design of a stable robust position controller for PAM is difficult since it is a very nonlinear time-variant controlled plant because of the compressibility of air, air mass flow rate through the valve, etc. The main contribution of this paper is a robust position control method based on sliding mode for pneumatic muscle actuator. Finally, it presents experimental results.


Sign in / Sign up

Export Citation Format

Share Document