Finite element modelling of the low velocity impact response of composite plates with block copolymer nano-reinforcements

2016 ◽  
Vol 2 (1) ◽  
pp. 3 ◽  
Author(s):  
Karthik Ram Ramakrishnan ◽  
Sébastien Denneulin ◽  
Sandra Guérard ◽  
Krishna Shankar ◽  
Philippe Viot
2018 ◽  
Vol 28 (3) ◽  
pp. 271-285 ◽  
Author(s):  
Furqan Ahmad ◽  
Fethi Abbassi ◽  
Myung Kyun Park ◽  
Jae-Wook Jung ◽  
Jung-Wuk Hong

2015 ◽  
Vol 1115 ◽  
pp. 523-526
Author(s):  
Ziamah B. Buang ◽  
S.M. Kashif

Composite materials that have low weight and high strength properties are currently one of the promising materials for a vehicle’s body. However, the effect of low velocity impact on composite may cause failure through matrix cracking, fibre breakage and delamination which may reduce the structure strength. Low velocity impact can be analysed either by experimentation or numerical simulation. Numerical simulation which is also known as finite element analysis can show the degradation of the composite structure properties after an impact loading condition without doing any experimentation. Thus, in this paper, LS-DYNA is the finite element analysis software that is used to simulate a low velocity impact on composite structures.


2012 ◽  
Vol 33 (5) ◽  
pp. 655-664 ◽  
Author(s):  
Silvio Pappadà ◽  
Rocco Rametta ◽  
Alessandro Largo ◽  
Alfonso Maffezzoli

Author(s):  
Apurba Das ◽  
Ranojit Banerjee ◽  
Amit Karmakar

This paper investigates on the problem of functionally graded (FG) shallow conical shells subjected to low-velocity impact by a solid spherical mass at the centre. Turbomachinery blades with low aspect ratio could be idealized as twisted rotating cantilever FG shallow conical shells. An analytic solution method is developed to solve and predict the impact response in terms of contact force, impactor displacement, initial velocity of impactor, target displacement and indentation of the FG conical shells with different sigmoidal power law exponent. A modified Hertzian contact law considering permanent indentation is used to calculate the contact force along with other impact response parameters. Using the Newmark’s time integration scheme the time dependent equations are solved. An eight noded isoparametric shell element is considered for the present finite element model. Parametric studies are performed to study the effects of triggering parameters like initial velocity of impactor (VOI), mass of the impactor (M0) and twist angle (Ψ) considering different sigmoidal power law exponent (N) for Ni (Nickel)-ZrO2 (Zirconia) and Ti (Titanium alloy-Ti–6Al–4V)-ZrO2 (Zirconia) functionally graded conical shell subjected to low velocity impact.


Sign in / Sign up

Export Citation Format

Share Document