Finite element analysis of implant design used in elbow arthroplasty process

Author(s):  
Vikky Kumhar ◽  
Amit Sarda
Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3444
Author(s):  
Avram Manea ◽  
Grigore Baciut ◽  
Mihaela Baciut ◽  
Dumitru Pop ◽  
Dan Sorin Comsa ◽  
...  

Background: Once inserted and osseointegrated, dental implants become ankylosed, which makes them immobile with respect to the alveolar bone. The present paper describes the development of a new and original implant design which replicates the 3D physiological mobility of natural teeth. The first phase of the test followed the resistance of the implant to mechanical stress as well as the behavior of the surrounding bone. Modifications to the design were made after the first set of results. In the second stage, mechanical tests in conjunction with finite element analysis were performed to test the improved implant design. Methods: In order to test the new concept, 6 titanium alloy (Ti6Al4V) implants were produced (milling). The implants were fitted into the dynamic testing device. The initial mobility was measured for each implant as well as their mobility after several test cycles. In the second stage, 10 implants with the modified design were produced. The testing protocol included mechanical testing and finite element analysis. Results: The initial testing protocol was applied almost entirely successfully. Premature fracturing of some implants and fitting blocks occurred and the testing protocol was readjusted. The issues in the initial test helped design the final testing protocol and the new implants with improved mechanical performance. Conclusion: The new prototype proved the efficiency of the concept. The initial tests pointed out the need for design improvement and the following tests validated the concept.


1979 ◽  
Vol 7 (1) ◽  
pp. 169-175 ◽  
Author(s):  
A. M. Weinstein ◽  
J. J. Klawitter ◽  
S. D. Cook

2005 ◽  
Vol 288-289 ◽  
pp. 657-660
Author(s):  
Xue Jun Wang ◽  
R. Wang ◽  
J.M. Luo ◽  
Ji Yong Chen ◽  
Xing Dong Zhang

It is important to obtain mechanical coupling between dental implants and bone, because the lack of mechanical coupling may cause bone loss around implants. In this research, a new cylindrical dental implant composed of three parts was designed to offer favored mechanical environment for the bone. A special gap structure changed the means of the stress transmission and decreased the stress in the cortical bone around the neck of the implant. Through finite element analysis (FEA) of stress distribution in bone around implant-bone interface, the advantages of this new implant (reducing stress concentration in cervical cortex and satisfying varieties of clinical needs) were verified. The peak stress for the new design was about 30 percent less than that of the traditional implant and the flexibility of the design was also confirmed by changing the gap depth and the wall thickness.


Author(s):  
Gurunathan Saravana Kumar ◽  
Subin Philip George

This work proposes a methodology involving stiffness optimization for subject-specific cementless hip implant design based on finite element analysis for reducing stress-shielding effect. To assess the change in the stress–strain state of the femur and the resulting stress-shielding effect due to insertion of the implant, a finite element analysis of the resected femur with implant assembly is carried out for a clinically relevant loading condition. Selecting the von Mises stress as the criterion for discriminating regions for elastic modulus difference, a stiffness minimization method was employed by varying the elastic modulus distribution in custom implant stem. The stiffness minimization problem is formulated as material distribution problem without explicitly penalizing partial volume elements. This formulation enables designs that could be fabricated using additive manufacturing to make porous implant with varying levels of porosity. Stress-shielding effect, measured as difference between the von Mises stress in the intact and implanted femur, decreased as the elastic modulus distribution is optimized.


2017 ◽  
Vol 18 (6) ◽  
pp. 510-515 ◽  
Author(s):  
S Suresh ◽  
Joji Markose ◽  
Shruthi Eshwar ◽  
K Rekha ◽  
Vipin Jain

ABSTRACT Introduction Comparison of platform switched (PS), sloping shoulder, and regular implants on stress reduction in various bone densities with finite element analysis. Materials and methods A total of 12 three-dimensional finite element models were built to analyze the stress distribution model. Nobel Biocare 4.3 × 8 mm regular platform replace select implant with matching diameter easy abutment, Nobel Biocare 4.3 × 8 mm replace select implant PS with 3.5 mm diameter easy abutment, Bicon 4 × 8 mm implant with 4 mm diameter sloping shoulder abutments were created virtually in compact bone density using software. The 130 N axial force and a 90 N oblique loading force were applied to the abutment to analyze the stress. Results Under horizontal and vertical loading, the sloping shoulder implant had lesser stresses in cancellous bone when compared with PS and regular implants. Sloping shoulder implant showed more stress distribution at implant–abutment interface and at crestal area, whereas with regular implants, the stresses were distributed at cortical area. Conclusion Sloping shoulder implant in subcrestal position is much favorable for bone growth, stress distribution, and preservation of remaining bone. Clinical significance Use of sloping shoulder implant design distributes the stress apically and creates lesser stresses when compared with PS implants. How to cite this article Markose J, Suresh S, Eshwar S, Rekha K, Jain V, Manvi S. Comparison of Platform Switched and Sloping Shoulder Implants on Stress Reduction in various Bone Densities: Finite Element Analysis. J Contemp Dent Pract 2017;18(6):510-515.


Sign in / Sign up

Export Citation Format

Share Document