Impact assessment of pre- and post-sown irrigation with Post Methanation distillery Effluent on soil health and crop yield

2010 ◽  
Vol 2 (4) ◽  
pp. 401 ◽  
Author(s):  
Sanjeev Tripathi ◽  
H.C. Joshi ◽  
Anoop Singh
2017 ◽  
Vol 11 ◽  
Author(s):  
Raghunath Subedi ◽  
Chiara Bertora ◽  
Laura Zavattaro ◽  
Carlo Grignani

Biochar (BC) from biomass waste pyrolysis has been widely studied due to its ability to increase carbon (C) sequestration, reduce greenhouse gas (GHG) emissions, and enhance both crop growth and soil quality. This review summarizes the current knowledge of BC production, characterization, and types, with a focus on its positive effects on crop yield and soil properties versus the unintended risks associated with these effects. Biochar-amended soils enhance crop growth and yield via several mechanisms: expanded plant nutrient and water availability through increased use efficiencies, improved soil quality, and suppression of soil and plant diseases. Yield response to BC has been shown to be more evident in acidic and sandy soils than in alkaline and fine-textured soils. Biochar composition and properties vary considerably with feedstock and pyrolysis conditions so much that its concentrations of toxic compounds and heavy metals can negatively impact crop and soil health. Consequently, more small-scale and greenhouse-sited studies are in process to investigate the role of BC/soil/crop types on crop growth, and the mechanisms by which they influence crop yield. Similarly, a need exists for long-term, field-scale studies on the effects (beneficial and harmful) of BC amendment on soil health and crop yields, so that production guidelines and quality standards may be developed for BCs derived from a range of feedstocks.


2018 ◽  
Vol 55 (5) ◽  
pp. 807-817
Author(s):  
AMANUEL A. GEBRU ◽  
TESFAY ARAYA ◽  
TSEGAY WOLDE-GEORGIS ◽  
JAN NYSSEN ◽  
FRÉDÉRIC BAUDRON ◽  
...  

SUMMARYA major problem faced by small-scale farmers in northern Ethiopia is reduced crop yield due to increasing soil degradation resulting from repeated tillage and inadequate agronomic management practices. These practices have left soils and rainfed crops susceptible to hazardous climatic events such as droughts. Sustainable farm practices such as minimum tillage and surface residue retention have been shown to improve soil health and crop productivity. The objectives of this field study were thus to evaluate the impacts of conservation agriculture (CA) practices on crop yield and economic productivity over 6 years in the eastern Tigray region of northern Ethiopia. Using a barley–wheat rotation from 2010 to 2016, the applied treatments were (i) permanent raised beds (PRB); (2) semi-permanent raised beds (SPB) and (3) conventional tillage (CT). Average barley and wheat biomass and grain yields in PRB and SPB treatments were consistently greater than yields under CT each year. In addition, the highest marginal rate of return was obtained in PRB and SPB compared to CT in all years (2010–2016). These results suggest that the CA practices of PRB and SPB can improve crop yield and profit compared to CT practices in the Tigray region.


2006 ◽  
Vol 85 (1-2) ◽  
pp. 27-37 ◽  
Author(s):  
Abraham Mehari ◽  
Bart Schultz ◽  
Herman Depeweg

2021 ◽  
Author(s):  
Upendra M. Sainju ◽  
Daniel Liptzin ◽  
Brett L. Allen ◽  
Sadikshya Rana‐Dangi

2021 ◽  
Vol 9 ◽  
Author(s):  
Vandit Vijay ◽  
Sowmya Shreedhar ◽  
Komalkant Adlak ◽  
Sachin Payyanad ◽  
Vandana Sreedharan ◽  
...  

Increasing pressure on farming systems due to rapid urbanization and population growth has severely affected soil health and fertility. The need to meet the growing food demands has also led to unsustainable farming practices with the intensive application of chemical fertilizers and pesticides, resulting in significant greenhouse gas emissions. Biochar, a multifunctional carbon material, is being actively explored globally for simultaneously addressing the concerns related to improving soil fertility and mitigating climate change. Reviews on biochar, however, mainly confined to lab-scale studies analyze biochar production and its characteristics, its effects on soil fertility, and carbon sequestration. The present review addresses this gap by focusing on biochar field trials to enhance the current understanding of its actual impact on the field, w.r.t. agriculture and climate change. The review presents an overview of the effects of biochar application as observed in field studies on soil health (soil’s physical, chemical, and biological properties), crop productivity, and its potential role in carbon sequestration. General trends from this review indicate that biochar application provides higher benefits in soil properties and crop yield in degraded tropical soils vis-a-vis the temperate regions. The results also reveal diverse observations in soil health properties and crop yields with biochar amendment as different studies consider different crops, biochar feedstocks, and local climatic and soil conditions. Furthermore, it has been observed that the effects of biochar application in lab-scale studies with controlled environments are not always distinctly witnessed in corresponding field-based studies and the effects are not always synchronous across different regions. Hence, there is a need for more data, especially from well-designed long-term field trials, to converge and validate the results on the effectiveness of biochar on diverse soil types and agro-climatic zones to improve crop productivity and mitigate climate change.


2021 ◽  
Author(s):  
Niraj Biswakarma ◽  
Bishesh Rai ◽  
Somanath Nayak ◽  
Radheshyam .

The triple challenge of acute water crisis, stagnant crop yield and soil health deterioration in NW Indo Gangetic Plains (IGP) ramble a search for potential alternative crop establishment technique (CET). Hence, maize-based crop rotations under best-bet conservation agriculture (CA) practices can plays a critical role in sustainable crop production. The CA-based tillage and CET viz. zero tillage (ZT) and permanent raised beds (PB) hold potential to intensify crop yield per hectare, improving resource use efficiency besides bringing desirable changes in soil physico-chemical and biological properties. Therefore, it needs to be popularized in larger scale chiefly under maize-based rotation to makes farming more attractive, profitable and sustainable.


2021 ◽  
Vol 3 (1) ◽  
pp. 23-35
Author(s):  
Subarna Shakya

Generally, a soil nutrients test has been performed for determining the productivity measures of any plant. It includes many challenges of environmental impacts and climate adaptation. To maintain the crop nutrients quality without affecting previous performance from the soil, it is required to minimize the challenges in the soil health sector can be increased economic returns from crop productivity. This article represents the review on improving productivity for soil nutrition. Soil nutrition was tested and assessed using the existing method, and deficiencies in the soil were identified that could be improved using some standardized methods. This productivity function of soil supply is measured by a various spatial scale which is a part of this research. The objective aims to achieve high productivity in the context of soil and also to realize environmental impact for soil functionality, productivity function, and resources information. The classification of soils corresponding multitude of approaches developed globally for potential soil productivity. The main focus is to determine strategies for the effects of a balanced nutrition system of maize-chickpea. The treatment and control can be developed and tested every year on crop yield. Besides, this research presents a future enhancement of improved productivity tests for a balanced soil nutrition system for better crop yield. The soil classification will be categorized with a knowledge base algorithm for further accuracy for the system.


Sign in / Sign up

Export Citation Format

Share Document