Evaluation of drying kinetics and performance parameters of indirect type solar dryer during drying of Capsicum annuum

2021 ◽  
Vol 17 (5) ◽  
pp. 442
Author(s):  
V.P. Chandramohan ◽  
D. Mallikarjuna Goud ◽  
Mugi Vishnu Vardhan Reddy
2004 ◽  
Vol 15 (3) ◽  
pp. 246-246
Author(s):  
M.A. Tony ◽  
A. Butschke ◽  
J. Zagon ◽  
H. Broll ◽  
M. Schauzu ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1175
Author(s):  
Tereza Kroulíková ◽  
Tereza Kůdelová ◽  
Erik Bartuli ◽  
Jan Vančura ◽  
Ilya Astrouski

A novel heat exchanger for automotive applications developed by the Heat Transfer and Fluid Flow Laboratory at the Brno University of Technology, Czech Republic, is compared with a conventional commercially available metal radiator. The heat transfer surface of this heat exchanger is composed of polymeric hollow fibers made from polyamide 612 by DuPont (Zytel LC6159). The cross-section of the polymeric radiator is identical to the aluminum radiator (louvered fins on flat tubes) in a Skoda Octavia and measures 720 × 480 mm. The goal of the study is to compare the functionality and performance parameters of both radiators based on the results of tests in a calibrated air wind tunnel. During testing, both heat exchangers were tested in conventional conditions used for car radiators with different air flow and coolant (50% ethylene glycol) rates. The polymeric hollow fiber heat exchanger demonstrated about 20% higher thermal performance for the same air flow. The efficiency of the polymeric radiator was in the range 80–93% and the efficiency of the aluminum radiator was in the range 64–84%. The polymeric radiator is 30% lighter than its conventional metal competitor. Both tested radiators had very similar pressure loss on the liquid side, but the polymeric radiator featured higher air pressure loss.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ashutosh Kumar ◽  
S. K. Kakoty

The present study analyzes the effect of pressure dam depth and relief track depth on the performance of three-lobe pressure dam bearing. Different values of dam depth and relief track depth are taken in nondimensional form in order to analyze their effect. Results are plotted for different parameters against eccentricity ratios and it is shown that the effect of pressure dam depth and relief track depth has great significance on stability and other performance parameters. Study of stability and performance characteristics is undertaken simultaneously.


2014 ◽  
Vol 32 (4) ◽  
pp. 398-403 ◽  
Author(s):  
Óscar Montes ◽  
Fernando Diánez ◽  
Francisco Camacho

A number of experiments on plant organs demonstrated that caffeine acts as a growth stimulator. In this study we aimed to determine the influence of caffeine on development of pepper crops under stress in the autumn-winter cycle, as peppers stop growing and developing in November and January. The experiments were conducted to determine how caffeine applied to the soil by fertigation, with doses of 2.25 µM and 9.00 µM for T1 and T2, respectively, compared to the control crop, affect the morphological development and performance of the pepper crops during two crop cycles (2008-2009 and 2009-2010 in autumn-winter). Throughout the whole vegetative plant cycle, performance parameters of fruit quality and the influence on the morphological development were obtained on different dates. With respect to the remainder of the morphological and production parameters, no significant differences were discovered in either of the evaluated cycles, thus leading to the conclusion that the two doses of caffeine, 2.25 µM and 9.00 µM, did not have any stimulant effect on the development and performance of the pepper crop during both cycles. Total yields were unaffected by either treatment, 4.89, 4.90 and 4.88 kg/m2 for the first assay and 5.28, 5.23 and 5.28 for the second, for treatments control and caffeine dosses 2.25 µM y 9.00 µM respectively.


Author(s):  
Mudassar Jehan ◽  
Masroor Ahmed Bajwa ◽  
Mohammad Masood Tariq ◽  
Asim Faraz ◽  
Ecevit Eyduran ◽  
...  

2018 ◽  
Vol 7 (4) ◽  
pp. 1-27
Author(s):  
Renas K.M. Sherko ◽  
Yusuf Arayici ◽  
Mike Kagioglou

A significant amount of energy is consumed by buildings due to ineffective design decisions with little consideration for energy efficiency. Yet, performance parameters should be considered during the early design phase, which is vital for improved energy performance and lower CO2 emissions. BIM, as a new way of working methodology, can help for performance-based design. However, it is still infancy in architectural practice about how BIM can be used to develop energy efficient design. Thus, the aim is to propose a strategic framework to guide architects about how to do performance-based design considering the local values and energy performance parameters. The research adopts a multi case study approach to gain qualitative and quantitative insights into the building energy performance considering the building design parameters. The outcome is a new design approach and protocol to assist designers to successfully use BIM for design optimization, PV technology use in design, rules-based design and performance assessment scheme reflecting local values.


Sign in / Sign up

Export Citation Format

Share Document